summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dorgrq.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dorgrq.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dorgrq.f')
-rw-r--r--src/lib/lapack/dorgrq.f222
1 files changed, 0 insertions, 222 deletions
diff --git a/src/lib/lapack/dorgrq.f b/src/lib/lapack/dorgrq.f
deleted file mode 100644
index 11633403..00000000
--- a/src/lib/lapack/dorgrq.f
+++ /dev/null
@@ -1,222 +0,0 @@
- SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
-*
-* -- LAPACK routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER INFO, K, LDA, LWORK, M, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
-* which is defined as the last M rows of a product of K elementary
-* reflectors of order N
-*
-* Q = H(1) H(2) . . . H(k)
-*
-* as returned by DGERQF.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrix Q. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix Q. N >= M.
-*
-* K (input) INTEGER
-* The number of elementary reflectors whose product defines the
-* matrix Q. M >= K >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the (m-k+i)-th row must contain the vector which
-* defines the elementary reflector H(i), for i = 1,2,...,k, as
-* returned by DGERQF in the last k rows of its array argument
-* A.
-* On exit, the M-by-N matrix Q.
-*
-* LDA (input) INTEGER
-* The first dimension of the array A. LDA >= max(1,M).
-*
-* TAU (input) DOUBLE PRECISION array, dimension (K)
-* TAU(i) must contain the scalar factor of the elementary
-* reflector H(i), as returned by DGERQF.
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,M).
-* For optimum performance LWORK >= M*NB, where NB is the
-* optimal blocksize.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument has an illegal value
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
-* ..
-* .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
- $ LWKOPT, NB, NBMIN, NX
-* ..
-* .. External Subroutines ..
- EXTERNAL DLARFB, DLARFT, DORGR2, XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
-* ..
-* .. Executable Statements ..
-*
-* Test the input arguments
-*
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.M ) THEN
- INFO = -2
- ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- END IF
-*
- IF( INFO.EQ.0 ) THEN
- IF( M.LE.0 ) THEN
- LWKOPT = 1
- ELSE
- NB = ILAENV( 1, 'DORGRQ', ' ', M, N, K, -1 )
- LWKOPT = M*NB
- END IF
- WORK( 1 ) = LWKOPT
-*
- IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORGRQ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( M.LE.0 ) THEN
- RETURN
- END IF
-*
- NBMIN = 2
- NX = 0
- IWS = M
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
-*
-* Determine when to cross over from blocked to unblocked code.
-*
- NX = MAX( 0, ILAENV( 3, 'DORGRQ', ' ', M, N, K, -1 ) )
- IF( NX.LT.K ) THEN
-*
-* Determine if workspace is large enough for blocked code.
-*
- LDWORK = M
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
-*
-* Not enough workspace to use optimal NB: reduce NB and
-* determine the minimum value of NB.
-*
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'DORGRQ', ' ', M, N, K, -1 ) )
- END IF
- END IF
- END IF
-*
- IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
-*
-* Use blocked code after the first block.
-* The last kk rows are handled by the block method.
-*
- KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
-*
-* Set A(1:m-kk,n-kk+1:n) to zero.
-*
- DO 20 J = N - KK + 1, N
- DO 10 I = 1, M - KK
- A( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- KK = 0
- END IF
-*
-* Use unblocked code for the first or only block.
-*
- CALL DORGR2( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
-*
- IF( KK.GT.0 ) THEN
-*
-* Use blocked code
-*
- DO 50 I = K - KK + 1, K, NB
- IB = MIN( NB, K-I+1 )
- II = M - K + I
- IF( II.GT.1 ) THEN
-*
-* Form the triangular factor of the block reflector
-* H = H(i+ib-1) . . . H(i+1) H(i)
-*
- CALL DLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
- $ A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
-*
-* Apply H' to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
-*
- CALL DLARFB( 'Right', 'Transpose', 'Backward', 'Rowwise',
- $ II-1, N-K+I+IB-1, IB, A( II, 1 ), LDA, WORK,
- $ LDWORK, A, LDA, WORK( IB+1 ), LDWORK )
- END IF
-*
-* Apply H' to columns 1:n-k+i+ib-1 of current block
-*
- CALL DORGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
- $ WORK, IINFO )
-*
-* Set columns n-k+i+ib:n of current block to zero
-*
- DO 40 L = N - K + I + IB, N
- DO 30 J = II, II + IB - 1
- A( J, L ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- 50 CONTINUE
- END IF
-*
- WORK( 1 ) = IWS
- RETURN
-*
-* End of DORGRQ
-*
- END