summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dlasr.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dlasr.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dlasr.f')
-rw-r--r--src/lib/lapack/dlasr.f361
1 files changed, 0 insertions, 361 deletions
diff --git a/src/lib/lapack/dlasr.f b/src/lib/lapack/dlasr.f
deleted file mode 100644
index 7e54bfc7..00000000
--- a/src/lib/lapack/dlasr.f
+++ /dev/null
@@ -1,361 +0,0 @@
- SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER DIRECT, PIVOT, SIDE
- INTEGER LDA, M, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DLASR applies a sequence of plane rotations to a real matrix A,
-* from either the left or the right.
-*
-* When SIDE = 'L', the transformation takes the form
-*
-* A := P*A
-*
-* and when SIDE = 'R', the transformation takes the form
-*
-* A := A*P**T
-*
-* where P is an orthogonal matrix consisting of a sequence of z plane
-* rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
-* and P**T is the transpose of P.
-*
-* When DIRECT = 'F' (Forward sequence), then
-*
-* P = P(z-1) * ... * P(2) * P(1)
-*
-* and when DIRECT = 'B' (Backward sequence), then
-*
-* P = P(1) * P(2) * ... * P(z-1)
-*
-* where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
-*
-* R(k) = ( c(k) s(k) )
-* = ( -s(k) c(k) ).
-*
-* When PIVOT = 'V' (Variable pivot), the rotation is performed
-* for the plane (k,k+1), i.e., P(k) has the form
-*
-* P(k) = ( 1 )
-* ( ... )
-* ( 1 )
-* ( c(k) s(k) )
-* ( -s(k) c(k) )
-* ( 1 )
-* ( ... )
-* ( 1 )
-*
-* where R(k) appears as a rank-2 modification to the identity matrix in
-* rows and columns k and k+1.
-*
-* When PIVOT = 'T' (Top pivot), the rotation is performed for the
-* plane (1,k+1), so P(k) has the form
-*
-* P(k) = ( c(k) s(k) )
-* ( 1 )
-* ( ... )
-* ( 1 )
-* ( -s(k) c(k) )
-* ( 1 )
-* ( ... )
-* ( 1 )
-*
-* where R(k) appears in rows and columns 1 and k+1.
-*
-* Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
-* performed for the plane (k,z), giving P(k) the form
-*
-* P(k) = ( 1 )
-* ( ... )
-* ( 1 )
-* ( c(k) s(k) )
-* ( 1 )
-* ( ... )
-* ( 1 )
-* ( -s(k) c(k) )
-*
-* where R(k) appears in rows and columns k and z. The rotations are
-* performed without ever forming P(k) explicitly.
-*
-* Arguments
-* =========
-*
-* SIDE (input) CHARACTER*1
-* Specifies whether the plane rotation matrix P is applied to
-* A on the left or the right.
-* = 'L': Left, compute A := P*A
-* = 'R': Right, compute A:= A*P**T
-*
-* PIVOT (input) CHARACTER*1
-* Specifies the plane for which P(k) is a plane rotation
-* matrix.
-* = 'V': Variable pivot, the plane (k,k+1)
-* = 'T': Top pivot, the plane (1,k+1)
-* = 'B': Bottom pivot, the plane (k,z)
-*
-* DIRECT (input) CHARACTER*1
-* Specifies whether P is a forward or backward sequence of
-* plane rotations.
-* = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
-* = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
-*
-* M (input) INTEGER
-* The number of rows of the matrix A. If m <= 1, an immediate
-* return is effected.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. If n <= 1, an
-* immediate return is effected.
-*
-* C (input) DOUBLE PRECISION array, dimension
-* (M-1) if SIDE = 'L'
-* (N-1) if SIDE = 'R'
-* The cosines c(k) of the plane rotations.
-*
-* S (input) DOUBLE PRECISION array, dimension
-* (M-1) if SIDE = 'L'
-* (N-1) if SIDE = 'R'
-* The sines s(k) of the plane rotations. The 2-by-2 plane
-* rotation part of the matrix P(k), R(k), has the form
-* R(k) = ( c(k) s(k) )
-* ( -s(k) c(k) ).
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* The M-by-N matrix A. On exit, A is overwritten by P*A if
-* SIDE = 'R' or by A*P**T if SIDE = 'L'.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
-* ..
-* .. Local Scalars ..
- INTEGER I, INFO, J
- DOUBLE PRECISION CTEMP, STEMP, TEMP
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX
-* ..
-* .. Executable Statements ..
-*
-* Test the input parameters
-*
- INFO = 0
- IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
- INFO = 1
- ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
- $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
- INFO = 2
- ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
- $ THEN
- INFO = 3
- ELSE IF( M.LT.0 ) THEN
- INFO = 4
- ELSE IF( N.LT.0 ) THEN
- INFO = 5
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLASR ', INFO )
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
- $ RETURN
- IF( LSAME( SIDE, 'L' ) ) THEN
-*
-* Form P * A
-*
- IF( LSAME( PIVOT, 'V' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 20 J = 1, M - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 10 I = 1, N
- TEMP = A( J+1, I )
- A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
- A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 40 J = M - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 30 I = 1, N
- TEMP = A( J+1, I )
- A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
- A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
- 30 CONTINUE
- END IF
- 40 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 60 J = 2, M
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 50 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
- A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 80 J = M, 2, -1
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 70 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
- A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
- 70 CONTINUE
- END IF
- 80 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 100 J = 1, M - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 90 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
- A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
- 90 CONTINUE
- END IF
- 100 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 120 J = M - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 110 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
- A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
- 110 CONTINUE
- END IF
- 120 CONTINUE
- END IF
- END IF
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
-*
-* Form A * P'
-*
- IF( LSAME( PIVOT, 'V' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 140 J = 1, N - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 130 I = 1, M
- TEMP = A( I, J+1 )
- A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
- A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
- 130 CONTINUE
- END IF
- 140 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 160 J = N - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 150 I = 1, M
- TEMP = A( I, J+1 )
- A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
- A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
- 150 CONTINUE
- END IF
- 160 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 180 J = 2, N
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 170 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
- A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
- 170 CONTINUE
- END IF
- 180 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 200 J = N, 2, -1
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 190 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
- A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
- 190 CONTINUE
- END IF
- 200 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 220 J = 1, N - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 210 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
- A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
- 210 CONTINUE
- END IF
- 220 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 240 J = N - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 230 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
- A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
- 230 CONTINUE
- END IF
- 240 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of DLASR
-*
- END