diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dlasr.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dlasr.f')
-rw-r--r-- | src/lib/lapack/dlasr.f | 361 |
1 files changed, 0 insertions, 361 deletions
diff --git a/src/lib/lapack/dlasr.f b/src/lib/lapack/dlasr.f deleted file mode 100644 index 7e54bfc7..00000000 --- a/src/lib/lapack/dlasr.f +++ /dev/null @@ -1,361 +0,0 @@ - SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER DIRECT, PIVOT, SIDE - INTEGER LDA, M, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), C( * ), S( * ) -* .. -* -* Purpose -* ======= -* -* DLASR applies a sequence of plane rotations to a real matrix A, -* from either the left or the right. -* -* When SIDE = 'L', the transformation takes the form -* -* A := P*A -* -* and when SIDE = 'R', the transformation takes the form -* -* A := A*P**T -* -* where P is an orthogonal matrix consisting of a sequence of z plane -* rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', -* and P**T is the transpose of P. -* -* When DIRECT = 'F' (Forward sequence), then -* -* P = P(z-1) * ... * P(2) * P(1) -* -* and when DIRECT = 'B' (Backward sequence), then -* -* P = P(1) * P(2) * ... * P(z-1) -* -* where P(k) is a plane rotation matrix defined by the 2-by-2 rotation -* -* R(k) = ( c(k) s(k) ) -* = ( -s(k) c(k) ). -* -* When PIVOT = 'V' (Variable pivot), the rotation is performed -* for the plane (k,k+1), i.e., P(k) has the form -* -* P(k) = ( 1 ) -* ( ... ) -* ( 1 ) -* ( c(k) s(k) ) -* ( -s(k) c(k) ) -* ( 1 ) -* ( ... ) -* ( 1 ) -* -* where R(k) appears as a rank-2 modification to the identity matrix in -* rows and columns k and k+1. -* -* When PIVOT = 'T' (Top pivot), the rotation is performed for the -* plane (1,k+1), so P(k) has the form -* -* P(k) = ( c(k) s(k) ) -* ( 1 ) -* ( ... ) -* ( 1 ) -* ( -s(k) c(k) ) -* ( 1 ) -* ( ... ) -* ( 1 ) -* -* where R(k) appears in rows and columns 1 and k+1. -* -* Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is -* performed for the plane (k,z), giving P(k) the form -* -* P(k) = ( 1 ) -* ( ... ) -* ( 1 ) -* ( c(k) s(k) ) -* ( 1 ) -* ( ... ) -* ( 1 ) -* ( -s(k) c(k) ) -* -* where R(k) appears in rows and columns k and z. The rotations are -* performed without ever forming P(k) explicitly. -* -* Arguments -* ========= -* -* SIDE (input) CHARACTER*1 -* Specifies whether the plane rotation matrix P is applied to -* A on the left or the right. -* = 'L': Left, compute A := P*A -* = 'R': Right, compute A:= A*P**T -* -* PIVOT (input) CHARACTER*1 -* Specifies the plane for which P(k) is a plane rotation -* matrix. -* = 'V': Variable pivot, the plane (k,k+1) -* = 'T': Top pivot, the plane (1,k+1) -* = 'B': Bottom pivot, the plane (k,z) -* -* DIRECT (input) CHARACTER*1 -* Specifies whether P is a forward or backward sequence of -* plane rotations. -* = 'F': Forward, P = P(z-1)*...*P(2)*P(1) -* = 'B': Backward, P = P(1)*P(2)*...*P(z-1) -* -* M (input) INTEGER -* The number of rows of the matrix A. If m <= 1, an immediate -* return is effected. -* -* N (input) INTEGER -* The number of columns of the matrix A. If n <= 1, an -* immediate return is effected. -* -* C (input) DOUBLE PRECISION array, dimension -* (M-1) if SIDE = 'L' -* (N-1) if SIDE = 'R' -* The cosines c(k) of the plane rotations. -* -* S (input) DOUBLE PRECISION array, dimension -* (M-1) if SIDE = 'L' -* (N-1) if SIDE = 'R' -* The sines s(k) of the plane rotations. The 2-by-2 plane -* rotation part of the matrix P(k), R(k), has the form -* R(k) = ( c(k) s(k) ) -* ( -s(k) c(k) ). -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* The M-by-N matrix A. On exit, A is overwritten by P*A if -* SIDE = 'R' or by A*P**T if SIDE = 'L'. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ONE, ZERO - PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) -* .. -* .. Local Scalars .. - INTEGER I, INFO, J - DOUBLE PRECISION CTEMP, STEMP, TEMP -* .. -* .. External Functions .. - LOGICAL LSAME - EXTERNAL LSAME -* .. -* .. External Subroutines .. - EXTERNAL XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX -* .. -* .. Executable Statements .. -* -* Test the input parameters -* - INFO = 0 - IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN - INFO = 1 - ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT, - $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN - INFO = 2 - ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) ) - $ THEN - INFO = 3 - ELSE IF( M.LT.0 ) THEN - INFO = 4 - ELSE IF( N.LT.0 ) THEN - INFO = 5 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = 9 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DLASR ', INFO ) - RETURN - END IF -* -* Quick return if possible -* - IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) - $ RETURN - IF( LSAME( SIDE, 'L' ) ) THEN -* -* Form P * A -* - IF( LSAME( PIVOT, 'V' ) ) THEN - IF( LSAME( DIRECT, 'F' ) ) THEN - DO 20 J = 1, M - 1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 10 I = 1, N - TEMP = A( J+1, I ) - A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) - A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) - 10 CONTINUE - END IF - 20 CONTINUE - ELSE IF( LSAME( DIRECT, 'B' ) ) THEN - DO 40 J = M - 1, 1, -1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 30 I = 1, N - TEMP = A( J+1, I ) - A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I ) - A( J, I ) = STEMP*TEMP + CTEMP*A( J, I ) - 30 CONTINUE - END IF - 40 CONTINUE - END IF - ELSE IF( LSAME( PIVOT, 'T' ) ) THEN - IF( LSAME( DIRECT, 'F' ) ) THEN - DO 60 J = 2, M - CTEMP = C( J-1 ) - STEMP = S( J-1 ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 50 I = 1, N - TEMP = A( J, I ) - A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) - A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) - 50 CONTINUE - END IF - 60 CONTINUE - ELSE IF( LSAME( DIRECT, 'B' ) ) THEN - DO 80 J = M, 2, -1 - CTEMP = C( J-1 ) - STEMP = S( J-1 ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 70 I = 1, N - TEMP = A( J, I ) - A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I ) - A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I ) - 70 CONTINUE - END IF - 80 CONTINUE - END IF - ELSE IF( LSAME( PIVOT, 'B' ) ) THEN - IF( LSAME( DIRECT, 'F' ) ) THEN - DO 100 J = 1, M - 1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 90 I = 1, N - TEMP = A( J, I ) - A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP - A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP - 90 CONTINUE - END IF - 100 CONTINUE - ELSE IF( LSAME( DIRECT, 'B' ) ) THEN - DO 120 J = M - 1, 1, -1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 110 I = 1, N - TEMP = A( J, I ) - A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP - A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP - 110 CONTINUE - END IF - 120 CONTINUE - END IF - END IF - ELSE IF( LSAME( SIDE, 'R' ) ) THEN -* -* Form A * P' -* - IF( LSAME( PIVOT, 'V' ) ) THEN - IF( LSAME( DIRECT, 'F' ) ) THEN - DO 140 J = 1, N - 1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 130 I = 1, M - TEMP = A( I, J+1 ) - A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) - A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) - 130 CONTINUE - END IF - 140 CONTINUE - ELSE IF( LSAME( DIRECT, 'B' ) ) THEN - DO 160 J = N - 1, 1, -1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 150 I = 1, M - TEMP = A( I, J+1 ) - A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J ) - A( I, J ) = STEMP*TEMP + CTEMP*A( I, J ) - 150 CONTINUE - END IF - 160 CONTINUE - END IF - ELSE IF( LSAME( PIVOT, 'T' ) ) THEN - IF( LSAME( DIRECT, 'F' ) ) THEN - DO 180 J = 2, N - CTEMP = C( J-1 ) - STEMP = S( J-1 ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 170 I = 1, M - TEMP = A( I, J ) - A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) - A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) - 170 CONTINUE - END IF - 180 CONTINUE - ELSE IF( LSAME( DIRECT, 'B' ) ) THEN - DO 200 J = N, 2, -1 - CTEMP = C( J-1 ) - STEMP = S( J-1 ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 190 I = 1, M - TEMP = A( I, J ) - A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 ) - A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 ) - 190 CONTINUE - END IF - 200 CONTINUE - END IF - ELSE IF( LSAME( PIVOT, 'B' ) ) THEN - IF( LSAME( DIRECT, 'F' ) ) THEN - DO 220 J = 1, N - 1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 210 I = 1, M - TEMP = A( I, J ) - A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP - A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP - 210 CONTINUE - END IF - 220 CONTINUE - ELSE IF( LSAME( DIRECT, 'B' ) ) THEN - DO 240 J = N - 1, 1, -1 - CTEMP = C( J ) - STEMP = S( J ) - IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN - DO 230 I = 1, M - TEMP = A( I, J ) - A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP - A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP - 230 CONTINUE - END IF - 240 CONTINUE - END IF - END IF - END IF -* - RETURN -* -* End of DLASR -* - END |