summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dlaqr5.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dlaqr5.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dlaqr5.f')
-rw-r--r--src/lib/lapack/dlaqr5.f812
1 files changed, 0 insertions, 812 deletions
diff --git a/src/lib/lapack/dlaqr5.f b/src/lib/lapack/dlaqr5.f
deleted file mode 100644
index 17857572..00000000
--- a/src/lib/lapack/dlaqr5.f
+++ /dev/null
@@ -1,812 +0,0 @@
- SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
- $ SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
- $ LDU, NV, WV, LDWV, NH, WH, LDWH )
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- LOGICAL WANTT, WANTZ
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
- $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
- $ Z( LDZ, * )
-* ..
-*
-* This auxiliary subroutine called by DLAQR0 performs a
-* single small-bulge multi-shift QR sweep.
-*
-* WANTT (input) logical scalar
-* WANTT = .true. if the quasi-triangular Schur factor
-* is being computed. WANTT is set to .false. otherwise.
-*
-* WANTZ (input) logical scalar
-* WANTZ = .true. if the orthogonal Schur factor is being
-* computed. WANTZ is set to .false. otherwise.
-*
-* KACC22 (input) integer with value 0, 1, or 2.
-* Specifies the computation mode of far-from-diagonal
-* orthogonal updates.
-* = 0: DLAQR5 does not accumulate reflections and does not
-* use matrix-matrix multiply to update far-from-diagonal
-* matrix entries.
-* = 1: DLAQR5 accumulates reflections and uses matrix-matrix
-* multiply to update the far-from-diagonal matrix entries.
-* = 2: DLAQR5 accumulates reflections, uses matrix-matrix
-* multiply to update the far-from-diagonal matrix entries,
-* and takes advantage of 2-by-2 block structure during
-* matrix multiplies.
-*
-* N (input) integer scalar
-* N is the order of the Hessenberg matrix H upon which this
-* subroutine operates.
-*
-* KTOP (input) integer scalar
-* KBOT (input) integer scalar
-* These are the first and last rows and columns of an
-* isolated diagonal block upon which the QR sweep is to be
-* applied. It is assumed without a check that
-* either KTOP = 1 or H(KTOP,KTOP-1) = 0
-* and
-* either KBOT = N or H(KBOT+1,KBOT) = 0.
-*
-* NSHFTS (input) integer scalar
-* NSHFTS gives the number of simultaneous shifts. NSHFTS
-* must be positive and even.
-*
-* SR (input) DOUBLE PRECISION array of size (NSHFTS)
-* SI (input) DOUBLE PRECISION array of size (NSHFTS)
-* SR contains the real parts and SI contains the imaginary
-* parts of the NSHFTS shifts of origin that define the
-* multi-shift QR sweep.
-*
-* H (input/output) DOUBLE PRECISION array of size (LDH,N)
-* On input H contains a Hessenberg matrix. On output a
-* multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
-* to the isolated diagonal block in rows and columns KTOP
-* through KBOT.
-*
-* LDH (input) integer scalar
-* LDH is the leading dimension of H just as declared in the
-* calling procedure. LDH.GE.MAX(1,N).
-*
-* ILOZ (input) INTEGER
-* IHIZ (input) INTEGER
-* Specify the rows of Z to which transformations must be
-* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
-*
-* Z (input/output) DOUBLE PRECISION array of size (LDZ,IHI)
-* If WANTZ = .TRUE., then the QR Sweep orthogonal
-* similarity transformation is accumulated into
-* Z(ILOZ:IHIZ,ILO:IHI) from the right.
-* If WANTZ = .FALSE., then Z is unreferenced.
-*
-* LDZ (input) integer scalar
-* LDA is the leading dimension of Z just as declared in
-* the calling procedure. LDZ.GE.N.
-*
-* V (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2)
-*
-* LDV (input) integer scalar
-* LDV is the leading dimension of V as declared in the
-* calling procedure. LDV.GE.3.
-*
-* U (workspace) DOUBLE PRECISION array of size
-* (LDU,3*NSHFTS-3)
-*
-* LDU (input) integer scalar
-* LDU is the leading dimension of U just as declared in the
-* in the calling subroutine. LDU.GE.3*NSHFTS-3.
-*
-* NH (input) integer scalar
-* NH is the number of columns in array WH available for
-* workspace. NH.GE.1.
-*
-* WH (workspace) DOUBLE PRECISION array of size (LDWH,NH)
-*
-* LDWH (input) integer scalar
-* Leading dimension of WH just as declared in the
-* calling procedure. LDWH.GE.3*NSHFTS-3.
-*
-* NV (input) integer scalar
-* NV is the number of rows in WV agailable for workspace.
-* NV.GE.1.
-*
-* WV (workspace) DOUBLE PRECISION array of size
-* (LDWV,3*NSHFTS-3)
-*
-* LDWV (input) integer scalar
-* LDWV is the leading dimension of WV as declared in the
-* in the calling subroutine. LDWV.GE.NV.
-*
-*
-* ================================================================
-* Based on contributions by
-* Karen Braman and Ralph Byers, Department of Mathematics,
-* University of Kansas, USA
-*
-* ============================================================
-* Reference:
-*
-* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
-* Algorithm Part I: Maintaining Well Focused Shifts, and
-* Level 3 Performance, SIAM Journal of Matrix Analysis,
-* volume 23, pages 929--947, 2002.
-*
-* ============================================================
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION ALPHA, BETA, H11, H12, H21, H22, REFSUM,
- $ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
- $ ULP
- INTEGER I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
- $ JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
- $ M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
- $ NS, NU
- LOGICAL ACCUM, BLK22, BMP22
-* ..
-* .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
-* ..
-* .. Intrinsic Functions ..
-*
- INTRINSIC ABS, DBLE, MAX, MIN, MOD
-* ..
-* .. Local Arrays ..
- DOUBLE PRECISION VT( 3 )
-* ..
-* .. External Subroutines ..
- EXTERNAL DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
- $ DTRMM
-* ..
-* .. Executable Statements ..
-*
-* ==== If there are no shifts, then there is nothing to do. ====
-*
- IF( NSHFTS.LT.2 )
- $ RETURN
-*
-* ==== If the active block is empty or 1-by-1, then there
-* . is nothing to do. ====
-*
- IF( KTOP.GE.KBOT )
- $ RETURN
-*
-* ==== Shuffle shifts into pairs of real shifts and pairs
-* . of complex conjugate shifts assuming complex
-* . conjugate shifts are already adjacent to one
-* . another. ====
-*
- DO 10 I = 1, NSHFTS - 2, 2
- IF( SI( I ).NE.-SI( I+1 ) ) THEN
-*
- SWAP = SR( I )
- SR( I ) = SR( I+1 )
- SR( I+1 ) = SR( I+2 )
- SR( I+2 ) = SWAP
-*
- SWAP = SI( I )
- SI( I ) = SI( I+1 )
- SI( I+1 ) = SI( I+2 )
- SI( I+2 ) = SWAP
- END IF
- 10 CONTINUE
-*
-* ==== NSHFTS is supposed to be even, but if is odd,
-* . then simply reduce it by one. The shuffle above
-* . ensures that the dropped shift is real and that
-* . the remaining shifts are paired. ====
-*
- NS = NSHFTS - MOD( NSHFTS, 2 )
-*
-* ==== Machine constants for deflation ====
-*
- SAFMIN = DLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULP = DLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( DBLE( N ) / ULP )
-*
-* ==== Use accumulated reflections to update far-from-diagonal
-* . entries ? ====
-*
- ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
-*
-* ==== If so, exploit the 2-by-2 block structure? ====
-*
- BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
-*
-* ==== clear trash ====
-*
- IF( KTOP+2.LE.KBOT )
- $ H( KTOP+2, KTOP ) = ZERO
-*
-* ==== NBMPS = number of 2-shift bulges in the chain ====
-*
- NBMPS = NS / 2
-*
-* ==== KDU = width of slab ====
-*
- KDU = 6*NBMPS - 3
-*
-* ==== Create and chase chains of NBMPS bulges ====
-*
- DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
- NDCOL = INCOL + KDU
- IF( ACCUM )
- $ CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
-*
-* ==== Near-the-diagonal bulge chase. The following loop
-* . performs the near-the-diagonal part of a small bulge
-* . multi-shift QR sweep. Each 6*NBMPS-2 column diagonal
-* . chunk extends from column INCOL to column NDCOL
-* . (including both column INCOL and column NDCOL). The
-* . following loop chases a 3*NBMPS column long chain of
-* . NBMPS bulges 3*NBMPS-2 columns to the right. (INCOL
-* . may be less than KTOP and and NDCOL may be greater than
-* . KBOT indicating phantom columns from which to chase
-* . bulges before they are actually introduced or to which
-* . to chase bulges beyond column KBOT.) ====
-*
- DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
-*
-* ==== Bulges number MTOP to MBOT are active double implicit
-* . shift bulges. There may or may not also be small
-* . 2-by-2 bulge, if there is room. The inactive bulges
-* . (if any) must wait until the active bulges have moved
-* . down the diagonal to make room. The phantom matrix
-* . paradigm described above helps keep track. ====
-*
- MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
- MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
- M22 = MBOT + 1
- BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
- $ ( KBOT-2 )
-*
-* ==== Generate reflections to chase the chain right
-* . one column. (The minimum value of K is KTOP-1.) ====
-*
- DO 20 M = MTOP, MBOT
- K = KRCOL + 3*( M-1 )
- IF( K.EQ.KTOP-1 ) THEN
- CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
- $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
- $ V( 1, M ) )
- ALPHA = V( 1, M )
- CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
- ELSE
- BETA = H( K+1, K )
- V( 2, M ) = H( K+2, K )
- V( 3, M ) = H( K+3, K )
- CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
-*
-* ==== A Bulge may collapse because of vigilant
-* . deflation or destructive underflow. (The
-* . initial bulge is always collapsed.) Use
-* . the two-small-subdiagonals trick to try
-* . to get it started again. If V(2,M).NE.0 and
-* . V(3,M) = H(K+3,K+1) = H(K+3,K+2) = 0, then
-* . this bulge is collapsing into a zero
-* . subdiagonal. It will be restarted next
-* . trip through the loop.)
-*
- IF( V( 1, M ).NE.ZERO .AND.
- $ ( V( 3, M ).NE.ZERO .OR. ( H( K+3,
- $ K+1 ).EQ.ZERO .AND. H( K+3, K+2 ).EQ.ZERO ) ) )
- $ THEN
-*
-* ==== Typical case: not collapsed (yet). ====
-*
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
-*
-* ==== Atypical case: collapsed. Attempt to
-* . reintroduce ignoring H(K+1,K). If the
-* . fill resulting from the new reflector
-* . is too large, then abandon it.
-* . Otherwise, use the new one. ====
-*
- CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
- $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
- $ VT )
- SCL = ABS( VT( 1 ) ) + ABS( VT( 2 ) ) +
- $ ABS( VT( 3 ) )
- IF( SCL.NE.ZERO ) THEN
- VT( 1 ) = VT( 1 ) / SCL
- VT( 2 ) = VT( 2 ) / SCL
- VT( 3 ) = VT( 3 ) / SCL
- END IF
-*
-* ==== The following is the traditional and
-* . conservative two-small-subdiagonals
-* . test. ====
-* .
- IF( ABS( H( K+1, K ) )*( ABS( VT( 2 ) )+
- $ ABS( VT( 3 ) ) ).GT.ULP*ABS( VT( 1 ) )*
- $ ( ABS( H( K, K ) )+ABS( H( K+1,
- $ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
-*
-* ==== Starting a new bulge here would
-* . create non-negligible fill. If
-* . the old reflector is diagonal (only
-* . possible with underflows), then
-* . change it to I. Otherwise, use
-* . it with trepidation. ====
-*
- IF( V( 2, M ).EQ.ZERO .AND. V( 3, M ).EQ.ZERO )
- $ THEN
- V( 1, M ) = ZERO
- ELSE
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- END IF
- ELSE
-*
-* ==== Stating a new bulge here would
-* . create only negligible fill.
-* . Replace the old reflector with
-* . the new one. ====
-*
- ALPHA = VT( 1 )
- CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
- REFSUM = H( K+1, K ) + H( K+2, K )*VT( 2 ) +
- $ H( K+3, K )*VT( 3 )
- H( K+1, K ) = H( K+1, K ) - VT( 1 )*REFSUM
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- V( 1, M ) = VT( 1 )
- V( 2, M ) = VT( 2 )
- V( 3, M ) = VT( 3 )
- END IF
- END IF
- END IF
- 20 CONTINUE
-*
-* ==== Generate a 2-by-2 reflection, if needed. ====
-*
- K = KRCOL + 3*( M22-1 )
- IF( BMP22 ) THEN
- IF( K.EQ.KTOP-1 ) THEN
- CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
- $ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
- $ V( 1, M22 ) )
- BETA = V( 1, M22 )
- CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- ELSE
- BETA = H( K+1, K )
- V( 2, M22 ) = H( K+2, K )
- CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- END IF
- ELSE
-*
-* ==== Initialize V(1,M22) here to avoid possible undefined
-* . variable problems later. ====
-*
- V( 1, M22 ) = ZERO
- END IF
-*
-* ==== Multiply H by reflections from the left ====
-*
- IF( ACCUM ) THEN
- JBOT = MIN( NDCOL, KBOT )
- ELSE IF( WANTT ) THEN
- JBOT = N
- ELSE
- JBOT = KBOT
- END IF
- DO 40 J = MAX( KTOP, KRCOL ), JBOT
- MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
- DO 30 M = MTOP, MEND
- K = KRCOL + 3*( M-1 )
- REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
- $ H( K+2, J )+V( 3, M )*H( K+3, J ) )
- H( K+1, J ) = H( K+1, J ) - REFSUM
- H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
- H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
- 30 CONTINUE
- 40 CONTINUE
- IF( BMP22 ) THEN
- K = KRCOL + 3*( M22-1 )
- DO 50 J = MAX( K+1, KTOP ), JBOT
- REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
- $ H( K+2, J ) )
- H( K+1, J ) = H( K+1, J ) - REFSUM
- H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
- 50 CONTINUE
- END IF
-*
-* ==== Multiply H by reflections from the right.
-* . Delay filling in the last row until the
-* . vigilant deflation check is complete. ====
-*
- IF( ACCUM ) THEN
- JTOP = MAX( KTOP, INCOL )
- ELSE IF( WANTT ) THEN
- JTOP = 1
- ELSE
- JTOP = KTOP
- END IF
- DO 90 M = MTOP, MBOT
- IF( V( 1, M ).NE.ZERO ) THEN
- K = KRCOL + 3*( M-1 )
- DO 60 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
- $ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM
- H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
- H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
- 60 CONTINUE
-*
- IF( ACCUM ) THEN
-*
-* ==== Accumulate U. (If necessary, update Z later
-* . with with an efficient matrix-matrix
-* . multiply.) ====
-*
- KMS = K - INCOL
- DO 70 J = MAX( 1, KTOP-INCOL ), KDU
- REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
- $ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
- U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
- U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
- 70 CONTINUE
- ELSE IF( WANTZ ) THEN
-*
-* ==== U is not accumulated, so update Z
-* . now by multiplying by reflections
-* . from the right. ====
-*
- DO 80 J = ILOZ, IHIZ
- REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
- $ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
- Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
- Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
- 80 CONTINUE
- END IF
- END IF
- 90 CONTINUE
-*
-* ==== Special case: 2-by-2 reflection (if needed) ====
-*
- K = KRCOL + 3*( M22-1 )
- IF( BMP22 .AND. ( V( 1, M22 ).NE.ZERO ) ) THEN
- DO 100 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
- $ H( J, K+2 ) )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM
- H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
- 100 CONTINUE
-*
- IF( ACCUM ) THEN
- KMS = K - INCOL
- DO 110 J = MAX( 1, KTOP-INCOL ), KDU
- REFSUM = V( 1, M22 )*( U( J, KMS+1 )+V( 2, M22 )*
- $ U( J, KMS+2 ) )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
- U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M22 )
- 110 CONTINUE
- ELSE IF( WANTZ ) THEN
- DO 120 J = ILOZ, IHIZ
- REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
- $ Z( J, K+2 ) )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
- Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
- 120 CONTINUE
- END IF
- END IF
-*
-* ==== Vigilant deflation check ====
-*
- MSTART = MTOP
- IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
- $ MSTART = MSTART + 1
- MEND = MBOT
- IF( BMP22 )
- $ MEND = MEND + 1
- IF( KRCOL.EQ.KBOT-2 )
- $ MEND = MEND + 1
- DO 130 M = MSTART, MEND
- K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
-*
-* ==== The following convergence test requires that
-* . the tradition small-compared-to-nearby-diagonals
-* . criterion and the Ahues & Tisseur (LAWN 122, 1997)
-* . criteria both be satisfied. The latter improves
-* . accuracy in some examples. Falling back on an
-* . alternate convergence criterion when TST1 or TST2
-* . is zero (as done here) is traditional but probably
-* . unnecessary. ====
-*
- IF( H( K+1, K ).NE.ZERO ) THEN
- TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
- IF( TST1.EQ.ZERO ) THEN
- IF( K.GE.KTOP+1 )
- $ TST1 = TST1 + ABS( H( K, K-1 ) )
- IF( K.GE.KTOP+2 )
- $ TST1 = TST1 + ABS( H( K, K-2 ) )
- IF( K.GE.KTOP+3 )
- $ TST1 = TST1 + ABS( H( K, K-3 ) )
- IF( K.LE.KBOT-2 )
- $ TST1 = TST1 + ABS( H( K+2, K+1 ) )
- IF( K.LE.KBOT-3 )
- $ TST1 = TST1 + ABS( H( K+3, K+1 ) )
- IF( K.LE.KBOT-4 )
- $ TST1 = TST1 + ABS( H( K+4, K+1 ) )
- END IF
- IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
- $ THEN
- H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
- H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
- H11 = MAX( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- H22 = MIN( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- SCL = H11 + H12
- TST2 = H22*( H11 / SCL )
-*
- IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
- $ MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
- END IF
- END IF
- 130 CONTINUE
-*
-* ==== Fill in the last row of each bulge. ====
-*
- MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
- DO 140 M = MTOP, MEND
- K = KRCOL + 3*( M-1 )
- REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
- H( K+4, K+1 ) = -REFSUM
- H( K+4, K+2 ) = -REFSUM*V( 2, M )
- H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
- 140 CONTINUE
-*
-* ==== End of near-the-diagonal bulge chase. ====
-*
- 150 CONTINUE
-*
-* ==== Use U (if accumulated) to update far-from-diagonal
-* . entries in H. If required, use U to update Z as
-* . well. ====
-*
- IF( ACCUM ) THEN
- IF( WANTT ) THEN
- JTOP = 1
- JBOT = N
- ELSE
- JTOP = KTOP
- JBOT = KBOT
- END IF
- IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
- $ ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
-*
-* ==== Updates not exploiting the 2-by-2 block
-* . structure of U. K1 and NU keep track of
-* . the location and size of U in the special
-* . cases of introducing bulges and chasing
-* . bulges off the bottom. In these special
-* . cases and in case the number of shifts
-* . is NS = 2, there is no 2-by-2 block
-* . structure to exploit. ====
-*
- K1 = MAX( 1, KTOP-INCOL )
- NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
-*
-* ==== Horizontal Multiply ====
-*
- DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
- JLEN = MIN( NH, JBOT-JCOL+1 )
- CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
- $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
- $ LDWH )
- CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
- $ H( INCOL+K1, JCOL ), LDH )
- 160 CONTINUE
-*
-* ==== Vertical multiply ====
-*
- DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
- JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
- CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ H( JROW, INCOL+K1 ), LDH )
- 170 CONTINUE
-*
-* ==== Z multiply (also vertical) ====
-*
- IF( WANTZ ) THEN
- DO 180 JROW = ILOZ, IHIZ, NV
- JLEN = MIN( NV, IHIZ-JROW+1 )
- CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ Z( JROW, INCOL+K1 ), LDZ )
- 180 CONTINUE
- END IF
- ELSE
-*
-* ==== Updates exploiting U's 2-by-2 block structure.
-* . (I2, I4, J2, J4 are the last rows and columns
-* . of the blocks.) ====
-*
- I2 = ( KDU+1 ) / 2
- I4 = KDU
- J2 = I4 - I2
- J4 = KDU
-*
-* ==== KZS and KNZ deal with the band of zeros
-* . along the diagonal of one of the triangular
-* . blocks. ====
-*
- KZS = ( J4-J2 ) - ( NS+1 )
- KNZ = NS + 1
-*
-* ==== Horizontal multiply ====
-*
- DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
- JLEN = MIN( NH, JBOT-JCOL+1 )
-*
-* ==== Copy bottom of H to top+KZS of scratch ====
-* (The first KZS rows get multiplied by zero.) ====
-*
- CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
- $ LDH, WH( KZS+1, 1 ), LDWH )
-*
-* ==== Multiply by U21' ====
-*
- CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
- CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
- $ U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
- $ LDWH )
-*
-* ==== Multiply top of H by U11' ====
-*
- CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
- $ H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
-*
-* ==== Copy top of H bottom of WH ====
-*
- CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
- $ WH( I2+1, 1 ), LDWH )
-*
-* ==== Multiply by U21' ====
-*
- CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
- $ U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
-*
-* ==== Multiply by U22 ====
-*
- CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
- $ U( J2+1, I2+1 ), LDU,
- $ H( INCOL+1+J2, JCOL ), LDH, ONE,
- $ WH( I2+1, 1 ), LDWH )
-*
-* ==== Copy it back ====
-*
- CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
- $ H( INCOL+1, JCOL ), LDH )
- 190 CONTINUE
-*
-* ==== Vertical multiply ====
-*
- DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
- JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
-*
-* ==== Copy right of H to scratch (the first KZS
-* . columns get multiplied by zero) ====
-*
- CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
- $ LDH, WV( 1, 1+KZS ), LDWV )
-*
-* ==== Multiply by U21 ====
-*
- CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
- CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
- $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
- $ LDWV )
-*
-* ==== Multiply by U11 ====
-*
- CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
- $ H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
- $ LDWV )
-*
-* ==== Copy left of H to right of scratch ====
-*
- CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
- $ WV( 1, 1+I2 ), LDWV )
-*
-* ==== Multiply by U21 ====
-*
- CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
- $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
-*
-* ==== Multiply by U22 ====
-*
- CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
- $ H( JROW, INCOL+1+J2 ), LDH,
- $ U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
- $ LDWV )
-*
-* ==== Copy it back ====
-*
- CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
- $ H( JROW, INCOL+1 ), LDH )
- 200 CONTINUE
-*
-* ==== Multiply Z (also vertical) ====
-*
- IF( WANTZ ) THEN
- DO 210 JROW = ILOZ, IHIZ, NV
- JLEN = MIN( NV, IHIZ-JROW+1 )
-*
-* ==== Copy right of Z to left of scratch (first
-* . KZS columns get multiplied by zero) ====
-*
- CALL DLACPY( 'ALL', JLEN, KNZ,
- $ Z( JROW, INCOL+1+J2 ), LDZ,
- $ WV( 1, 1+KZS ), LDWV )
-*
-* ==== Multiply by U12 ====
-*
- CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
- $ LDWV )
- CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
- $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
- $ LDWV )
-*
-* ==== Multiply by U11 ====
-*
- CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
- $ Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
- $ WV, LDWV )
-*
-* ==== Copy left of Z to right of scratch ====
-*
- CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
- $ LDZ, WV( 1, 1+I2 ), LDWV )
-*
-* ==== Multiply by U21 ====
-*
- CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
- $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
- $ LDWV )
-*
-* ==== Multiply by U22 ====
-*
- CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
- $ Z( JROW, INCOL+1+J2 ), LDZ,
- $ U( J2+1, I2+1 ), LDU, ONE,
- $ WV( 1, 1+I2 ), LDWV )
-*
-* ==== Copy the result back to Z ====
-*
- CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
- $ Z( JROW, INCOL+1 ), LDZ )
- 210 CONTINUE
- END IF
- END IF
- END IF
- 220 CONTINUE
-*
-* ==== End of DLAQR5 ====
-*
- END