diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dlaqr4.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dlaqr4.f')
-rw-r--r-- | src/lib/lapack/dlaqr4.f | 640 |
1 files changed, 0 insertions, 640 deletions
diff --git a/src/lib/lapack/dlaqr4.f b/src/lib/lapack/dlaqr4.f deleted file mode 100644 index 8692e7f9..00000000 --- a/src/lib/lapack/dlaqr4.f +++ /dev/null @@ -1,640 +0,0 @@ - SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, - $ ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N - LOGICAL WANTT, WANTZ -* .. -* .. Array Arguments .. - DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ), - $ Z( LDZ, * ) -* .. -* -* This subroutine implements one level of recursion for DLAQR0. -* It is a complete implementation of the small bulge multi-shift -* QR algorithm. It may be called by DLAQR0 and, for large enough -* deflation window size, it may be called by DLAQR3. This -* subroutine is identical to DLAQR0 except that it calls DLAQR2 -* instead of DLAQR3. -* -* Purpose -* ======= -* -* DLAQR4 computes the eigenvalues of a Hessenberg matrix H -* and, optionally, the matrices T and Z from the Schur decomposition -* H = Z T Z**T, where T is an upper quasi-triangular matrix (the -* Schur form), and Z is the orthogonal matrix of Schur vectors. -* -* Optionally Z may be postmultiplied into an input orthogonal -* matrix Q so that this routine can give the Schur factorization -* of a matrix A which has been reduced to the Hessenberg form H -* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. -* -* Arguments -* ========= -* -* WANTT (input) LOGICAL -* = .TRUE. : the full Schur form T is required; -* = .FALSE.: only eigenvalues are required. -* -* WANTZ (input) LOGICAL -* = .TRUE. : the matrix of Schur vectors Z is required; -* = .FALSE.: Schur vectors are not required. -* -* N (input) INTEGER -* The order of the matrix H. N .GE. 0. -* -* ILO (input) INTEGER -* IHI (input) INTEGER -* It is assumed that H is already upper triangular in rows -* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, -* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a -* previous call to DGEBAL, and then passed to DGEHRD when the -* matrix output by DGEBAL is reduced to Hessenberg form. -* Otherwise, ILO and IHI should be set to 1 and N, -* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. -* If N = 0, then ILO = 1 and IHI = 0. -* -* H (input/output) DOUBLE PRECISION array, dimension (LDH,N) -* On entry, the upper Hessenberg matrix H. -* On exit, if INFO = 0 and WANTT is .TRUE., then H contains -* the upper quasi-triangular matrix T from the Schur -* decomposition (the Schur form); 2-by-2 diagonal blocks -* (corresponding to complex conjugate pairs of eigenvalues) -* are returned in standard form, with H(i,i) = H(i+1,i+1) -* and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is -* .FALSE., then the contents of H are unspecified on exit. -* (The output value of H when INFO.GT.0 is given under the -* description of INFO below.) -* -* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and -* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. -* -* LDH (input) INTEGER -* The leading dimension of the array H. LDH .GE. max(1,N). -* -* WR (output) DOUBLE PRECISION array, dimension (IHI) -* WI (output) DOUBLE PRECISION array, dimension (IHI) -* The real and imaginary parts, respectively, of the computed -* eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI) -* and WI(ILO:IHI). If two eigenvalues are computed as a -* complex conjugate pair, they are stored in consecutive -* elements of WR and WI, say the i-th and (i+1)th, with -* WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then -* the eigenvalues are stored in the same order as on the -* diagonal of the Schur form returned in H, with -* WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal -* block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and -* WI(i+1) = -WI(i). -* -* ILOZ (input) INTEGER -* IHIZ (input) INTEGER -* Specify the rows of Z to which transformations must be -* applied if WANTZ is .TRUE.. -* 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. -* -* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI) -* If WANTZ is .FALSE., then Z is not referenced. -* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is -* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the -* orthogonal Schur factor of H(ILO:IHI,ILO:IHI). -* (The output value of Z when INFO.GT.0 is given under -* the description of INFO below.) -* -* LDZ (input) INTEGER -* The leading dimension of the array Z. if WANTZ is .TRUE. -* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK -* On exit, if LWORK = -1, WORK(1) returns an estimate of -* the optimal value for LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK .GE. max(1,N) -* is sufficient, but LWORK typically as large as 6*N may -* be required for optimal performance. A workspace query -* to determine the optimal workspace size is recommended. -* -* If LWORK = -1, then DLAQR4 does a workspace query. -* In this case, DLAQR4 checks the input parameters and -* estimates the optimal workspace size for the given -* values of N, ILO and IHI. The estimate is returned -* in WORK(1). No error message related to LWORK is -* issued by XERBLA. Neither H nor Z are accessed. -* -* -* INFO (output) INTEGER -* = 0: successful exit -* .GT. 0: if INFO = i, DLAQR4 failed to compute all of -* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR -* and WI contain those eigenvalues which have been -* successfully computed. (Failures are rare.) -* -* If INFO .GT. 0 and WANT is .FALSE., then on exit, -* the remaining unconverged eigenvalues are the eigen- -* values of the upper Hessenberg matrix rows and -* columns ILO through INFO of the final, output -* value of H. -* -* If INFO .GT. 0 and WANTT is .TRUE., then on exit -* -* (*) (initial value of H)*U = U*(final value of H) -* -* where U is an orthogonal matrix. The final -* value of H is upper Hessenberg and quasi-triangular -* in rows and columns INFO+1 through IHI. -* -* If INFO .GT. 0 and WANTZ is .TRUE., then on exit -* -* (final value of Z(ILO:IHI,ILOZ:IHIZ) -* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U -* -* where U is the orthogonal matrix in (*) (regard- -* less of the value of WANTT.) -* -* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not -* accessed. -* -* ================================================================ -* Based on contributions by -* Karen Braman and Ralph Byers, Department of Mathematics, -* University of Kansas, USA -* -* ================================================================ -* References: -* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR -* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 -* Performance, SIAM Journal of Matrix Analysis, volume 23, pages -* 929--947, 2002. -* -* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR -* Algorithm Part II: Aggressive Early Deflation, SIAM Journal -* of Matrix Analysis, volume 23, pages 948--973, 2002. -* -* ================================================================ -* .. Parameters .. -* -* ==== Matrices of order NTINY or smaller must be processed by -* . DLAHQR because of insufficient subdiagonal scratch space. -* . (This is a hard limit.) ==== -* -* ==== Exceptional deflation windows: try to cure rare -* . slow convergence by increasing the size of the -* . deflation window after KEXNW iterations. ===== -* -* ==== Exceptional shifts: try to cure rare slow convergence -* . with ad-hoc exceptional shifts every KEXSH iterations. -* . The constants WILK1 and WILK2 are used to form the -* . exceptional shifts. ==== -* - INTEGER NTINY - PARAMETER ( NTINY = 11 ) - INTEGER KEXNW, KEXSH - PARAMETER ( KEXNW = 5, KEXSH = 6 ) - DOUBLE PRECISION WILK1, WILK2 - PARAMETER ( WILK1 = 0.75d0, WILK2 = -0.4375d0 ) - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 ) -* .. -* .. Local Scalars .. - DOUBLE PRECISION AA, BB, CC, CS, DD, SN, SS, SWAP - INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS, - $ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS, - $ LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX, - $ NSR, NVE, NW, NWMAX, NWR - LOGICAL NWINC, SORTED - CHARACTER JBCMPZ*2 -* .. -* .. External Functions .. - INTEGER ILAENV - EXTERNAL ILAENV -* .. -* .. Local Arrays .. - DOUBLE PRECISION ZDUM( 1, 1 ) -* .. -* .. External Subroutines .. - EXTERNAL DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5 -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, DBLE, INT, MAX, MIN, MOD -* .. -* .. Executable Statements .. - INFO = 0 -* -* ==== Quick return for N = 0: nothing to do. ==== -* - IF( N.EQ.0 ) THEN - WORK( 1 ) = ONE - RETURN - END IF -* -* ==== Set up job flags for ILAENV. ==== -* - IF( WANTT ) THEN - JBCMPZ( 1: 1 ) = 'S' - ELSE - JBCMPZ( 1: 1 ) = 'E' - END IF - IF( WANTZ ) THEN - JBCMPZ( 2: 2 ) = 'V' - ELSE - JBCMPZ( 2: 2 ) = 'N' - END IF -* -* ==== Tiny matrices must use DLAHQR. ==== -* - IF( N.LE.NTINY ) THEN -* -* ==== Estimate optimal workspace. ==== -* - LWKOPT = 1 - IF( LWORK.NE.-1 ) - $ CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, - $ ILOZ, IHIZ, Z, LDZ, INFO ) - ELSE -* -* ==== Use small bulge multi-shift QR with aggressive early -* . deflation on larger-than-tiny matrices. ==== -* -* ==== Hope for the best. ==== -* - INFO = 0 -* -* ==== NWR = recommended deflation window size. At this -* . point, N .GT. NTINY = 11, so there is enough -* . subdiagonal workspace for NWR.GE.2 as required. -* . (In fact, there is enough subdiagonal space for -* . NWR.GE.3.) ==== -* - NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) - NWR = MAX( 2, NWR ) - NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR ) - NW = NWR -* -* ==== NSR = recommended number of simultaneous shifts. -* . At this point N .GT. NTINY = 11, so there is at -* . enough subdiagonal workspace for NSR to be even -* . and greater than or equal to two as required. ==== -* - NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) - NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO ) - NSR = MAX( 2, NSR-MOD( NSR, 2 ) ) -* -* ==== Estimate optimal workspace ==== -* -* ==== Workspace query call to DLAQR2 ==== -* - CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ, - $ IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH, - $ N, H, LDH, WORK, -1 ) -* -* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ==== -* - LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) ) -* -* ==== Quick return in case of workspace query. ==== -* - IF( LWORK.EQ.-1 ) THEN - WORK( 1 ) = DBLE( LWKOPT ) - RETURN - END IF -* -* ==== DLAHQR/DLAQR0 crossover point ==== -* - NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) - NMIN = MAX( NTINY, NMIN ) -* -* ==== Nibble crossover point ==== -* - NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) - NIBBLE = MAX( 0, NIBBLE ) -* -* ==== Accumulate reflections during ttswp? Use block -* . 2-by-2 structure during matrix-matrix multiply? ==== -* - KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK ) - KACC22 = MAX( 0, KACC22 ) - KACC22 = MIN( 2, KACC22 ) -* -* ==== NWMAX = the largest possible deflation window for -* . which there is sufficient workspace. ==== -* - NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 ) -* -* ==== NSMAX = the Largest number of simultaneous shifts -* . for which there is sufficient workspace. ==== -* - NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 ) - NSMAX = NSMAX - MOD( NSMAX, 2 ) -* -* ==== NDFL: an iteration count restarted at deflation. ==== -* - NDFL = 1 -* -* ==== ITMAX = iteration limit ==== -* - ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) ) -* -* ==== Last row and column in the active block ==== -* - KBOT = IHI -* -* ==== Main Loop ==== -* - DO 80 IT = 1, ITMAX -* -* ==== Done when KBOT falls below ILO ==== -* - IF( KBOT.LT.ILO ) - $ GO TO 90 -* -* ==== Locate active block ==== -* - DO 10 K = KBOT, ILO + 1, -1 - IF( H( K, K-1 ).EQ.ZERO ) - $ GO TO 20 - 10 CONTINUE - K = ILO - 20 CONTINUE - KTOP = K -* -* ==== Select deflation window size ==== -* - NH = KBOT - KTOP + 1 - IF( NDFL.LT.KEXNW .OR. NH.LT.NW ) THEN -* -* ==== Typical deflation window. If possible and -* . advisable, nibble the entire active block. -* . If not, use size NWR or NWR+1 depending upon -* . which has the smaller corresponding subdiagonal -* . entry (a heuristic). ==== -* - NWINC = .TRUE. - IF( NH.LE.MIN( NMIN, NWMAX ) ) THEN - NW = NH - ELSE - NW = MIN( NWR, NH, NWMAX ) - IF( NW.LT.NWMAX ) THEN - IF( NW.GE.NH-1 ) THEN - NW = NH - ELSE - KWTOP = KBOT - NW + 1 - IF( ABS( H( KWTOP, KWTOP-1 ) ).GT. - $ ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1 - END IF - END IF - END IF - ELSE -* -* ==== Exceptional deflation window. If there have -* . been no deflations in KEXNW or more iterations, -* . then vary the deflation window size. At first, -* . because, larger windows are, in general, more -* . powerful than smaller ones, rapidly increase the -* . window up to the maximum reasonable and possible. -* . Then maybe try a slightly smaller window. ==== -* - IF( NWINC .AND. NW.LT.MIN( NWMAX, NH ) ) THEN - NW = MIN( NWMAX, NH, 2*NW ) - ELSE - NWINC = .FALSE. - IF( NW.EQ.NH .AND. NH.GT.2 ) - $ NW = NH - 1 - END IF - END IF -* -* ==== Aggressive early deflation: -* . split workspace under the subdiagonal into -* . - an nw-by-nw work array V in the lower -* . left-hand-corner, -* . - an NW-by-at-least-NW-but-more-is-better -* . (NW-by-NHO) horizontal work array along -* . the bottom edge, -* . - an at-least-NW-but-more-is-better (NHV-by-NW) -* . vertical work array along the left-hand-edge. -* . ==== -* - KV = N - NW + 1 - KT = NW + 1 - NHO = ( N-NW-1 ) - KT + 1 - KWV = NW + 2 - NVE = ( N-NW ) - KWV + 1 -* -* ==== Aggressive early deflation ==== -* - CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, - $ IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH, - $ NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, - $ WORK, LWORK ) -* -* ==== Adjust KBOT accounting for new deflations. ==== -* - KBOT = KBOT - LD -* -* ==== KS points to the shifts. ==== -* - KS = KBOT - LS + 1 -* -* ==== Skip an expensive QR sweep if there is a (partly -* . heuristic) reason to expect that many eigenvalues -* . will deflate without it. Here, the QR sweep is -* . skipped if many eigenvalues have just been deflated -* . or if the remaining active block is small. -* - IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT- - $ KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN -* -* ==== NS = nominal number of simultaneous shifts. -* . This may be lowered (slightly) if DLAQR2 -* . did not provide that many shifts. ==== -* - NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) ) - NS = NS - MOD( NS, 2 ) -* -* ==== If there have been no deflations -* . in a multiple of KEXSH iterations, -* . then try exceptional shifts. -* . Otherwise use shifts provided by -* . DLAQR2 above or from the eigenvalues -* . of a trailing principal submatrix. ==== -* - IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN - KS = KBOT - NS + 1 - DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2 - SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) ) - AA = WILK1*SS + H( I, I ) - BB = SS - CC = WILK2*SS - DD = AA - CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ), - $ WR( I ), WI( I ), CS, SN ) - 30 CONTINUE - IF( KS.EQ.KTOP ) THEN - WR( KS+1 ) = H( KS+1, KS+1 ) - WI( KS+1 ) = ZERO - WR( KS ) = WR( KS+1 ) - WI( KS ) = WI( KS+1 ) - END IF - ELSE -* -* ==== Got NS/2 or fewer shifts? Use DLAHQR -* . on a trailing principal submatrix to -* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, -* . there is enough space below the subdiagonal -* . to fit an NS-by-NS scratch array.) ==== -* - IF( KBOT-KS+1.LE.NS / 2 ) THEN - KS = KBOT - NS + 1 - KT = N - NS + 1 - CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH, - $ H( KT, 1 ), LDH ) - CALL DLAHQR( .false., .false., NS, 1, NS, - $ H( KT, 1 ), LDH, WR( KS ), WI( KS ), - $ 1, 1, ZDUM, 1, INF ) - KS = KS + INF -* -* ==== In case of a rare QR failure use -* . eigenvalues of the trailing 2-by-2 -* . principal submatrix. ==== -* - IF( KS.GE.KBOT ) THEN - AA = H( KBOT-1, KBOT-1 ) - CC = H( KBOT, KBOT-1 ) - BB = H( KBOT-1, KBOT ) - DD = H( KBOT, KBOT ) - CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ), - $ WI( KBOT-1 ), WR( KBOT ), - $ WI( KBOT ), CS, SN ) - KS = KBOT - 1 - END IF - END IF -* - IF( KBOT-KS+1.GT.NS ) THEN -* -* ==== Sort the shifts (Helps a little) -* . Bubble sort keeps complex conjugate -* . pairs together. ==== -* - SORTED = .false. - DO 50 K = KBOT, KS + 1, -1 - IF( SORTED ) - $ GO TO 60 - SORTED = .true. - DO 40 I = KS, K - 1 - IF( ABS( WR( I ) )+ABS( WI( I ) ).LT. - $ ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN - SORTED = .false. -* - SWAP = WR( I ) - WR( I ) = WR( I+1 ) - WR( I+1 ) = SWAP -* - SWAP = WI( I ) - WI( I ) = WI( I+1 ) - WI( I+1 ) = SWAP - END IF - 40 CONTINUE - 50 CONTINUE - 60 CONTINUE - END IF -* -* ==== Shuffle shifts into pairs of real shifts -* . and pairs of complex conjugate shifts -* . assuming complex conjugate shifts are -* . already adjacent to one another. (Yes, -* . they are.) ==== -* - DO 70 I = KBOT, KS + 2, -2 - IF( WI( I ).NE.-WI( I-1 ) ) THEN -* - SWAP = WR( I ) - WR( I ) = WR( I-1 ) - WR( I-1 ) = WR( I-2 ) - WR( I-2 ) = SWAP -* - SWAP = WI( I ) - WI( I ) = WI( I-1 ) - WI( I-1 ) = WI( I-2 ) - WI( I-2 ) = SWAP - END IF - 70 CONTINUE - END IF -* -* ==== If there are only two shifts and both are -* . real, then use only one. ==== -* - IF( KBOT-KS+1.EQ.2 ) THEN - IF( WI( KBOT ).EQ.ZERO ) THEN - IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT. - $ ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN - WR( KBOT-1 ) = WR( KBOT ) - ELSE - WR( KBOT ) = WR( KBOT-1 ) - END IF - END IF - END IF -* -* ==== Use up to NS of the the smallest magnatiude -* . shifts. If there aren't NS shifts available, -* . then use them all, possibly dropping one to -* . make the number of shifts even. ==== -* - NS = MIN( NS, KBOT-KS+1 ) - NS = NS - MOD( NS, 2 ) - KS = KBOT - NS + 1 -* -* ==== Small-bulge multi-shift QR sweep: -* . split workspace under the subdiagonal into -* . - a KDU-by-KDU work array U in the lower -* . left-hand-corner, -* . - a KDU-by-at-least-KDU-but-more-is-better -* . (KDU-by-NHo) horizontal work array WH along -* . the bottom edge, -* . - and an at-least-KDU-but-more-is-better-by-KDU -* . (NVE-by-KDU) vertical work WV arrow along -* . the left-hand-edge. ==== -* - KDU = 3*NS - 3 - KU = N - KDU + 1 - KWH = KDU + 1 - NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1 - KWV = KDU + 4 - NVE = N - KDU - KWV + 1 -* -* ==== Small-bulge multi-shift QR sweep ==== -* - CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS, - $ WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z, - $ LDZ, WORK, 3, H( KU, 1 ), LDH, NVE, - $ H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH ) - END IF -* -* ==== Note progress (or the lack of it). ==== -* - IF( LD.GT.0 ) THEN - NDFL = 1 - ELSE - NDFL = NDFL + 1 - END IF -* -* ==== End of main loop ==== - 80 CONTINUE -* -* ==== Iteration limit exceeded. Set INFO to show where -* . the problem occurred and exit. ==== -* - INFO = KBOT - 90 CONTINUE - END IF -* -* ==== Return the optimal value of LWORK. ==== -* - WORK( 1 ) = DBLE( LWKOPT ) -* -* ==== End of DLAQR4 ==== -* - END |