diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dlaqps.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dlaqps.f')
-rw-r--r-- | src/lib/lapack/dlaqps.f | 259 |
1 files changed, 0 insertions, 259 deletions
diff --git a/src/lib/lapack/dlaqps.f b/src/lib/lapack/dlaqps.f deleted file mode 100644 index 94658d27..00000000 --- a/src/lib/lapack/dlaqps.f +++ /dev/null @@ -1,259 +0,0 @@ - SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, - $ VN2, AUXV, F, LDF ) -* -* -- LAPACK auxiliary routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER KB, LDA, LDF, M, N, NB, OFFSET -* .. -* .. Array Arguments .. - INTEGER JPVT( * ) - DOUBLE PRECISION A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ), - $ VN1( * ), VN2( * ) -* .. -* -* Purpose -* ======= -* -* DLAQPS computes a step of QR factorization with column pivoting -* of a real M-by-N matrix A by using Blas-3. It tries to factorize -* NB columns from A starting from the row OFFSET+1, and updates all -* of the matrix with Blas-3 xGEMM. -* -* In some cases, due to catastrophic cancellations, it cannot -* factorize NB columns. Hence, the actual number of factorized -* columns is returned in KB. -* -* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. -* -* Arguments -* ========= -* -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix A. N >= 0 -* -* OFFSET (input) INTEGER -* The number of rows of A that have been factorized in -* previous steps. -* -* NB (input) INTEGER -* The number of columns to factorize. -* -* KB (output) INTEGER -* The number of columns actually factorized. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the M-by-N matrix A. -* On exit, block A(OFFSET+1:M,1:KB) is the triangular -* factor obtained and block A(1:OFFSET,1:N) has been -* accordingly pivoted, but no factorized. -* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has -* been updated. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* JPVT (input/output) INTEGER array, dimension (N) -* JPVT(I) = K <==> Column K of the full matrix A has been -* permuted into position I in AP. -* -* TAU (output) DOUBLE PRECISION array, dimension (KB) -* The scalar factors of the elementary reflectors. -* -* VN1 (input/output) DOUBLE PRECISION array, dimension (N) -* The vector with the partial column norms. -* -* VN2 (input/output) DOUBLE PRECISION array, dimension (N) -* The vector with the exact column norms. -* -* AUXV (input/output) DOUBLE PRECISION array, dimension (NB) -* Auxiliar vector. -* -* F (input/output) DOUBLE PRECISION array, dimension (LDF,NB) -* Matrix F' = L*Y'*A. -* -* LDF (input) INTEGER -* The leading dimension of the array F. LDF >= max(1,N). -* -* Further Details -* =============== -* -* Based on contributions by -* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain -* X. Sun, Computer Science Dept., Duke University, USA -* -* Partial column norm updating strategy modified by -* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, -* University of Zagreb, Croatia. -* June 2006. -* For more details see LAPACK Working Note 176. -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - INTEGER ITEMP, J, K, LASTRK, LSTICC, PVT, RK - DOUBLE PRECISION AKK, TEMP, TEMP2, TOL3Z -* .. -* .. External Subroutines .. - EXTERNAL DGEMM, DGEMV, DLARFG, DSWAP -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, DBLE, MAX, MIN, NINT, SQRT -* .. -* .. External Functions .. - INTEGER IDAMAX - DOUBLE PRECISION DLAMCH, DNRM2 - EXTERNAL IDAMAX, DLAMCH, DNRM2 -* .. -* .. Executable Statements .. -* - LASTRK = MIN( M, N+OFFSET ) - LSTICC = 0 - K = 0 - TOL3Z = SQRT(DLAMCH('Epsilon')) -* -* Beginning of while loop. -* - 10 CONTINUE - IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN - K = K + 1 - RK = OFFSET + K -* -* Determine ith pivot column and swap if necessary -* - PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 ) - IF( PVT.NE.K ) THEN - CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 ) - CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF ) - ITEMP = JPVT( PVT ) - JPVT( PVT ) = JPVT( K ) - JPVT( K ) = ITEMP - VN1( PVT ) = VN1( K ) - VN2( PVT ) = VN2( K ) - END IF -* -* Apply previous Householder reflectors to column K: -* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. -* - IF( K.GT.1 ) THEN - CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ), - $ LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 ) - END IF -* -* Generate elementary reflector H(k). -* - IF( RK.LT.M ) THEN - CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) ) - ELSE - CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) ) - END IF -* - AKK = A( RK, K ) - A( RK, K ) = ONE -* -* Compute Kth column of F: -* -* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). -* - IF( K.LT.N ) THEN - CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ), - $ A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO, - $ F( K+1, K ), 1 ) - END IF -* -* Padding F(1:K,K) with zeros. -* - DO 20 J = 1, K - F( J, K ) = ZERO - 20 CONTINUE -* -* Incremental updating of F: -* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' -* *A(RK:M,K). -* - IF( K.GT.1 ) THEN - CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ), - $ LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 ) -* - CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF, - $ AUXV( 1 ), 1, ONE, F( 1, K ), 1 ) - END IF -* -* Update the current row of A: -* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. -* - IF( K.LT.N ) THEN - CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF, - $ A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA ) - END IF -* -* Update partial column norms. -* - IF( RK.LT.LASTRK ) THEN - DO 30 J = K + 1, N - IF( VN1( J ).NE.ZERO ) THEN -* -* NOTE: The following 4 lines follow from the analysis in -* Lapack Working Note 176. -* - TEMP = ABS( A( RK, J ) ) / VN1( J ) - TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) ) - TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2 - IF( TEMP2 .LE. TOL3Z ) THEN - VN2( J ) = DBLE( LSTICC ) - LSTICC = J - ELSE - VN1( J ) = VN1( J )*SQRT( TEMP ) - END IF - END IF - 30 CONTINUE - END IF -* - A( RK, K ) = AKK -* -* End of while loop. -* - GO TO 10 - END IF - KB = K - RK = OFFSET + KB -* -* Apply the block reflector to the rest of the matrix: -* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - -* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. -* - IF( KB.LT.MIN( N, M-OFFSET ) ) THEN - CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE, - $ A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE, - $ A( RK+1, KB+1 ), LDA ) - END IF -* -* Recomputation of difficult columns. -* - 40 CONTINUE - IF( LSTICC.GT.0 ) THEN - ITEMP = NINT( VN2( LSTICC ) ) - VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 ) -* -* NOTE: The computation of VN1( LSTICC ) relies on the fact that -* SNRM2 does not fail on vectors with norm below the value of -* SQRT(DLAMCH('S')) -* - VN2( LSTICC ) = VN1( LSTICC ) - LSTICC = ITEMP - GO TO 40 - END IF -* - RETURN -* -* End of DLAQPS -* - END |