diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dgeqpf.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dgeqpf.f')
-rw-r--r-- | src/lib/lapack/dgeqpf.f | 231 |
1 files changed, 0 insertions, 231 deletions
diff --git a/src/lib/lapack/dgeqpf.f b/src/lib/lapack/dgeqpf.f deleted file mode 100644 index 1b7acd6d..00000000 --- a/src/lib/lapack/dgeqpf.f +++ /dev/null @@ -1,231 +0,0 @@ - SUBROUTINE DGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO ) -* -* -- LAPACK deprecated driver routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, M, N -* .. -* .. Array Arguments .. - INTEGER JPVT( * ) - DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* This routine is deprecated and has been replaced by routine DGEQP3. -* -* DGEQPF computes a QR factorization with column pivoting of a -* real M-by-N matrix A: A*P = Q*R. -* -* Arguments -* ========= -* -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix A. N >= 0 -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the M-by-N matrix A. -* On exit, the upper triangle of the array contains the -* min(M,N)-by-N upper triangular matrix R; the elements -* below the diagonal, together with the array TAU, -* represent the orthogonal matrix Q as a product of -* min(m,n) elementary reflectors. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* JPVT (input/output) INTEGER array, dimension (N) -* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted -* to the front of A*P (a leading column); if JPVT(i) = 0, -* the i-th column of A is a free column. -* On exit, if JPVT(i) = k, then the i-th column of A*P -* was the k-th column of A. -* -* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) -* The scalar factors of the elementary reflectors. -* -* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* -* Further Details -* =============== -* -* The matrix Q is represented as a product of elementary reflectors -* -* Q = H(1) H(2) . . . H(n) -* -* Each H(i) has the form -* -* H = I - tau * v * v' -* -* where tau is a real scalar, and v is a real vector with -* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). -* -* The matrix P is represented in jpvt as follows: If -* jpvt(j) = i -* then the jth column of P is the ith canonical unit vector. -* -* Partial column norm updating strategy modified by -* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, -* University of Zagreb, Croatia. -* June 2006. -* For more details see LAPACK Working Note 176. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - INTEGER I, ITEMP, J, MA, MN, PVT - DOUBLE PRECISION AII, TEMP, TEMP2, TOL3Z -* .. -* .. External Subroutines .. - EXTERNAL DGEQR2, DLARF, DLARFG, DORM2R, DSWAP, XERBLA -* .. -* .. Intrinsic Functions .. - INTRINSIC ABS, MAX, MIN, SQRT -* .. -* .. External Functions .. - INTEGER IDAMAX - DOUBLE PRECISION DLAMCH, DNRM2 - EXTERNAL IDAMAX, DLAMCH, DNRM2 -* .. -* .. Executable Statements .. -* -* Test the input arguments -* - INFO = 0 - IF( M.LT.0 ) THEN - INFO = -1 - ELSE IF( N.LT.0 ) THEN - INFO = -2 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -4 - END IF - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGEQPF', -INFO ) - RETURN - END IF -* - MN = MIN( M, N ) - TOL3Z = SQRT(DLAMCH('Epsilon')) -* -* Move initial columns up front -* - ITEMP = 1 - DO 10 I = 1, N - IF( JPVT( I ).NE.0 ) THEN - IF( I.NE.ITEMP ) THEN - CALL DSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 ) - JPVT( I ) = JPVT( ITEMP ) - JPVT( ITEMP ) = I - ELSE - JPVT( I ) = I - END IF - ITEMP = ITEMP + 1 - ELSE - JPVT( I ) = I - END IF - 10 CONTINUE - ITEMP = ITEMP - 1 -* -* Compute the QR factorization and update remaining columns -* - IF( ITEMP.GT.0 ) THEN - MA = MIN( ITEMP, M ) - CALL DGEQR2( M, MA, A, LDA, TAU, WORK, INFO ) - IF( MA.LT.N ) THEN - CALL DORM2R( 'Left', 'Transpose', M, N-MA, MA, A, LDA, TAU, - $ A( 1, MA+1 ), LDA, WORK, INFO ) - END IF - END IF -* - IF( ITEMP.LT.MN ) THEN -* -* Initialize partial column norms. The first n elements of -* work store the exact column norms. -* - DO 20 I = ITEMP + 1, N - WORK( I ) = DNRM2( M-ITEMP, A( ITEMP+1, I ), 1 ) - WORK( N+I ) = WORK( I ) - 20 CONTINUE -* -* Compute factorization -* - DO 40 I = ITEMP + 1, MN -* -* Determine ith pivot column and swap if necessary -* - PVT = ( I-1 ) + IDAMAX( N-I+1, WORK( I ), 1 ) -* - IF( PVT.NE.I ) THEN - CALL DSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 ) - ITEMP = JPVT( PVT ) - JPVT( PVT ) = JPVT( I ) - JPVT( I ) = ITEMP - WORK( PVT ) = WORK( I ) - WORK( N+PVT ) = WORK( N+I ) - END IF -* -* Generate elementary reflector H(i) -* - IF( I.LT.M ) THEN - CALL DLARFG( M-I+1, A( I, I ), A( I+1, I ), 1, TAU( I ) ) - ELSE - CALL DLARFG( 1, A( M, M ), A( M, M ), 1, TAU( M ) ) - END IF -* - IF( I.LT.N ) THEN -* -* Apply H(i) to A(i:m,i+1:n) from the left -* - AII = A( I, I ) - A( I, I ) = ONE - CALL DLARF( 'LEFT', M-I+1, N-I, A( I, I ), 1, TAU( I ), - $ A( I, I+1 ), LDA, WORK( 2*N+1 ) ) - A( I, I ) = AII - END IF -* -* Update partial column norms -* - DO 30 J = I + 1, N - IF( WORK( J ).NE.ZERO ) THEN -* -* NOTE: The following 4 lines follow from the analysis in -* Lapack Working Note 176. -* - TEMP = ABS( A( I, J ) ) / WORK( J ) - TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) ) - TEMP2 = TEMP*( WORK( J ) / WORK( N+J ) )**2 - IF( TEMP2 .LE. TOL3Z ) THEN - IF( M-I.GT.0 ) THEN - WORK( J ) = DNRM2( M-I, A( I+1, J ), 1 ) - WORK( N+J ) = WORK( J ) - ELSE - WORK( J ) = ZERO - WORK( N+J ) = ZERO - END IF - ELSE - WORK( J ) = WORK( J )*SQRT( TEMP ) - END IF - END IF - 30 CONTINUE -* - 40 CONTINUE - END IF - RETURN -* -* End of DGEQPF -* - END |