diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dgeqp3.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dgeqp3.f')
-rw-r--r-- | src/lib/lapack/dgeqp3.f | 287 |
1 files changed, 0 insertions, 287 deletions
diff --git a/src/lib/lapack/dgeqp3.f b/src/lib/lapack/dgeqp3.f deleted file mode 100644 index d6bc537d..00000000 --- a/src/lib/lapack/dgeqp3.f +++ /dev/null @@ -1,287 +0,0 @@ - SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO ) -* -* -- LAPACK routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LWORK, M, N -* .. -* .. Array Arguments .. - INTEGER JPVT( * ) - DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DGEQP3 computes a QR factorization with column pivoting of a -* matrix A: A*P = Q*R using Level 3 BLAS. -* -* Arguments -* ========= -* -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix A. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the M-by-N matrix A. -* On exit, the upper triangle of the array contains the -* min(M,N)-by-N upper trapezoidal matrix R; the elements below -* the diagonal, together with the array TAU, represent the -* orthogonal matrix Q as a product of min(M,N) elementary -* reflectors. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* JPVT (input/output) INTEGER array, dimension (N) -* On entry, if JPVT(J).ne.0, the J-th column of A is permuted -* to the front of A*P (a leading column); if JPVT(J)=0, -* the J-th column of A is a free column. -* On exit, if JPVT(J)=K, then the J-th column of A*P was the -* the K-th column of A. -* -* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) -* The scalar factors of the elementary reflectors. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO=0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= 3*N+1. -* For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB -* is the optimal blocksize. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit. -* < 0: if INFO = -i, the i-th argument had an illegal value. -* -* Further Details -* =============== -* -* The matrix Q is represented as a product of elementary reflectors -* -* Q = H(1) H(2) . . . H(k), where k = min(m,n). -* -* Each H(i) has the form -* -* H(i) = I - tau * v * v' -* -* where tau is a real/complex scalar, and v is a real/complex vector -* with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in -* A(i+1:m,i), and tau in TAU(i). -* -* Based on contributions by -* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain -* X. Sun, Computer Science Dept., Duke University, USA -* -* ===================================================================== -* -* .. Parameters .. - INTEGER INB, INBMIN, IXOVER - PARAMETER ( INB = 1, INBMIN = 2, IXOVER = 3 ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB, - $ NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN -* .. -* .. External Subroutines .. - EXTERNAL DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA -* .. -* .. External Functions .. - INTEGER ILAENV - DOUBLE PRECISION DNRM2 - EXTERNAL ILAENV, DNRM2 -* .. -* .. Intrinsic Functions .. - INTRINSIC INT, MAX, MIN -* .. -* .. Executable Statements .. -* -* Test input arguments -* ==================== -* - INFO = 0 - LQUERY = ( LWORK.EQ.-1 ) - IF( M.LT.0 ) THEN - INFO = -1 - ELSE IF( N.LT.0 ) THEN - INFO = -2 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -4 - END IF -* - IF( INFO.EQ.0 ) THEN - MINMN = MIN( M, N ) - IF( MINMN.EQ.0 ) THEN - IWS = 1 - LWKOPT = 1 - ELSE - IWS = 3*N + 1 - NB = ILAENV( INB, 'DGEQRF', ' ', M, N, -1, -1 ) - LWKOPT = 2*N + ( N + 1 )*NB - END IF - WORK( 1 ) = LWKOPT -* - IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN - INFO = -8 - END IF - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGEQP3', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible. -* - IF( MINMN.EQ.0 ) THEN - RETURN - END IF -* -* Move initial columns up front. -* - NFXD = 1 - DO 10 J = 1, N - IF( JPVT( J ).NE.0 ) THEN - IF( J.NE.NFXD ) THEN - CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 ) - JPVT( J ) = JPVT( NFXD ) - JPVT( NFXD ) = J - ELSE - JPVT( J ) = J - END IF - NFXD = NFXD + 1 - ELSE - JPVT( J ) = J - END IF - 10 CONTINUE - NFXD = NFXD - 1 -* -* Factorize fixed columns -* ======================= -* -* Compute the QR factorization of fixed columns and update -* remaining columns. -* - IF( NFXD.GT.0 ) THEN - NA = MIN( M, NFXD ) -*CC CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) - CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO ) - IWS = MAX( IWS, INT( WORK( 1 ) ) ) - IF( NA.LT.N ) THEN -*CC CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA, -*CC $ TAU, A( 1, NA+1 ), LDA, WORK, INFO ) - CALL DORMQR( 'Left', 'Transpose', M, N-NA, NA, A, LDA, TAU, - $ A( 1, NA+1 ), LDA, WORK, LWORK, INFO ) - IWS = MAX( IWS, INT( WORK( 1 ) ) ) - END IF - END IF -* -* Factorize free columns -* ====================== -* - IF( NFXD.LT.MINMN ) THEN -* - SM = M - NFXD - SN = N - NFXD - SMINMN = MINMN - NFXD -* -* Determine the block size. -* - NB = ILAENV( INB, 'DGEQRF', ' ', SM, SN, -1, -1 ) - NBMIN = 2 - NX = 0 -* - IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN -* -* Determine when to cross over from blocked to unblocked code. -* - NX = MAX( 0, ILAENV( IXOVER, 'DGEQRF', ' ', SM, SN, -1, - $ -1 ) ) -* -* - IF( NX.LT.SMINMN ) THEN -* -* Determine if workspace is large enough for blocked code. -* - MINWS = 2*SN + ( SN+1 )*NB - IWS = MAX( IWS, MINWS ) - IF( LWORK.LT.MINWS ) THEN -* -* Not enough workspace to use optimal NB: Reduce NB and -* determine the minimum value of NB. -* - NB = ( LWORK-2*SN ) / ( SN+1 ) - NBMIN = MAX( 2, ILAENV( INBMIN, 'DGEQRF', ' ', SM, SN, - $ -1, -1 ) ) -* -* - END IF - END IF - END IF -* -* Initialize partial column norms. The first N elements of work -* store the exact column norms. -* - DO 20 J = NFXD + 1, N - WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 ) - WORK( N+J ) = WORK( J ) - 20 CONTINUE -* - IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND. - $ ( NX.LT.SMINMN ) ) THEN -* -* Use blocked code initially. -* - J = NFXD + 1 -* -* Compute factorization: while loop. -* -* - TOPBMN = MINMN - NX - 30 CONTINUE - IF( J.LE.TOPBMN ) THEN - JB = MIN( NB, TOPBMN-J+1 ) -* -* Factorize JB columns among columns J:N. -* - CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA, - $ JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ), - $ WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 ) -* - J = J + FJB - GO TO 30 - END IF - ELSE - J = NFXD + 1 - END IF -* -* Use unblocked code to factor the last or only block. -* -* - IF( J.LE.MINMN ) - $ CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ), - $ TAU( J ), WORK( J ), WORK( N+J ), - $ WORK( 2*N+1 ) ) -* - END IF -* - WORK( 1 ) = IWS - RETURN -* -* End of DGEQP3 -* - END |