diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dgelss.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dgelss.f')
-rw-r--r-- | src/lib/lapack/dgelss.f | 617 |
1 files changed, 0 insertions, 617 deletions
diff --git a/src/lib/lapack/dgelss.f b/src/lib/lapack/dgelss.f deleted file mode 100644 index f024e138..00000000 --- a/src/lib/lapack/dgelss.f +++ /dev/null @@ -1,617 +0,0 @@ - SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, - $ WORK, LWORK, INFO ) -* -* -- LAPACK driver routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK - DOUBLE PRECISION RCOND -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* DGELSS computes the minimum norm solution to a real linear least -* squares problem: -* -* Minimize 2-norm(| b - A*x |). -* -* using the singular value decomposition (SVD) of A. A is an M-by-N -* matrix which may be rank-deficient. -* -* Several right hand side vectors b and solution vectors x can be -* handled in a single call; they are stored as the columns of the -* M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix -* X. -* -* The effective rank of A is determined by treating as zero those -* singular values which are less than RCOND times the largest singular -* value. -* -* Arguments -* ========= -* -* M (input) INTEGER -* The number of rows of the matrix A. M >= 0. -* -* N (input) INTEGER -* The number of columns of the matrix A. N >= 0. -* -* NRHS (input) INTEGER -* The number of right hand sides, i.e., the number of columns -* of the matrices B and X. NRHS >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) -* On entry, the M-by-N matrix A. -* On exit, the first min(m,n) rows of A are overwritten with -* its right singular vectors, stored rowwise. -* -* LDA (input) INTEGER -* The leading dimension of the array A. LDA >= max(1,M). -* -* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) -* On entry, the M-by-NRHS right hand side matrix B. -* On exit, B is overwritten by the N-by-NRHS solution -* matrix X. If m >= n and RANK = n, the residual -* sum-of-squares for the solution in the i-th column is given -* by the sum of squares of elements n+1:m in that column. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,max(M,N)). -* -* S (output) DOUBLE PRECISION array, dimension (min(M,N)) -* The singular values of A in decreasing order. -* The condition number of A in the 2-norm = S(1)/S(min(m,n)). -* -* RCOND (input) DOUBLE PRECISION -* RCOND is used to determine the effective rank of A. -* Singular values S(i) <= RCOND*S(1) are treated as zero. -* If RCOND < 0, machine precision is used instead. -* -* RANK (output) INTEGER -* The effective rank of A, i.e., the number of singular values -* which are greater than RCOND*S(1). -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= 1, and also: -* LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS ) -* For good performance, LWORK should generally be larger. -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* > 0: the algorithm for computing the SVD failed to converge; -* if INFO = i, i off-diagonal elements of an intermediate -* bidiagonal form did not converge to zero. -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) -* .. -* .. Local Scalars .. - LOGICAL LQUERY - INTEGER BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL, - $ ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN, - $ MAXWRK, MINMN, MINWRK, MM, MNTHR - DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR -* .. -* .. Local Arrays .. - DOUBLE PRECISION VDUM( 1 ) -* .. -* .. External Subroutines .. - EXTERNAL DBDSQR, DCOPY, DGEBRD, DGELQF, DGEMM, DGEMV, - $ DGEQRF, DLABAD, DLACPY, DLASCL, DLASET, DORGBR, - $ DORMBR, DORMLQ, DORMQR, DRSCL, XERBLA -* .. -* .. External Functions .. - INTEGER ILAENV - DOUBLE PRECISION DLAMCH, DLANGE - EXTERNAL ILAENV, DLAMCH, DLANGE -* .. -* .. Intrinsic Functions .. - INTRINSIC MAX, MIN -* .. -* .. Executable Statements .. -* -* Test the input arguments -* - INFO = 0 - MINMN = MIN( M, N ) - MAXMN = MAX( M, N ) - LQUERY = ( LWORK.EQ.-1 ) - IF( M.LT.0 ) THEN - INFO = -1 - ELSE IF( N.LT.0 ) THEN - INFO = -2 - ELSE IF( NRHS.LT.0 ) THEN - INFO = -3 - ELSE IF( LDA.LT.MAX( 1, M ) ) THEN - INFO = -5 - ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN - INFO = -7 - END IF -* -* Compute workspace -* (Note: Comments in the code beginning "Workspace:" describe the -* minimal amount of workspace needed at that point in the code, -* as well as the preferred amount for good performance. -* NB refers to the optimal block size for the immediately -* following subroutine, as returned by ILAENV.) -* - IF( INFO.EQ.0 ) THEN - MINWRK = 1 - MAXWRK = 1 - IF( MINMN.GT.0 ) THEN - MM = M - MNTHR = ILAENV( 6, 'DGELSS', ' ', M, N, NRHS, -1 ) - IF( M.GE.N .AND. M.GE.MNTHR ) THEN -* -* Path 1a - overdetermined, with many more rows than -* columns -* - MM = N - MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'DGEQRF', ' ', M, - $ N, -1, -1 ) ) - MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'DORMQR', 'LT', - $ M, NRHS, N, -1 ) ) - END IF - IF( M.GE.N ) THEN -* -* Path 1 - overdetermined or exactly determined -* -* Compute workspace needed for DBDSQR -* - BDSPAC = MAX( 1, 5*N ) - MAXWRK = MAX( MAXWRK, 3*N + ( MM + N )*ILAENV( 1, - $ 'DGEBRD', ' ', MM, N, -1, -1 ) ) - MAXWRK = MAX( MAXWRK, 3*N + NRHS*ILAENV( 1, 'DORMBR', - $ 'QLT', MM, NRHS, N, -1 ) ) - MAXWRK = MAX( MAXWRK, 3*N + ( N - 1 )*ILAENV( 1, - $ 'DORGBR', 'P', N, N, N, -1 ) ) - MAXWRK = MAX( MAXWRK, BDSPAC ) - MAXWRK = MAX( MAXWRK, N*NRHS ) - MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC ) - MAXWRK = MAX( MINWRK, MAXWRK ) - END IF - IF( N.GT.M ) THEN -* -* Compute workspace needed for DBDSQR -* - BDSPAC = MAX( 1, 5*M ) - MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC ) - IF( N.GE.MNTHR ) THEN -* -* Path 2a - underdetermined, with many more columns -* than rows -* - MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, - $ -1 ) - MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1, - $ 'DGEBRD', ' ', M, M, -1, -1 ) ) - MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1, - $ 'DORMBR', 'QLT', M, NRHS, M, -1 ) ) - MAXWRK = MAX( MAXWRK, M*M + 4*M + - $ ( M - 1 )*ILAENV( 1, 'DORGBR', 'P', M, - $ M, M, -1 ) ) - MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC ) - IF( NRHS.GT.1 ) THEN - MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS ) - ELSE - MAXWRK = MAX( MAXWRK, M*M + 2*M ) - END IF - MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1, 'DORMLQ', - $ 'LT', N, NRHS, M, -1 ) ) - ELSE -* -* Path 2 - underdetermined -* - MAXWRK = 3*M + ( N + M )*ILAENV( 1, 'DGEBRD', ' ', M, - $ N, -1, -1 ) - MAXWRK = MAX( MAXWRK, 3*M + NRHS*ILAENV( 1, 'DORMBR', - $ 'QLT', M, NRHS, M, -1 ) ) - MAXWRK = MAX( MAXWRK, 3*M + M*ILAENV( 1, 'DORGBR', - $ 'P', M, N, M, -1 ) ) - MAXWRK = MAX( MAXWRK, BDSPAC ) - MAXWRK = MAX( MAXWRK, N*NRHS ) - END IF - END IF - MAXWRK = MAX( MINWRK, MAXWRK ) - END IF - WORK( 1 ) = MAXWRK -* - IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) - $ INFO = -12 - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGELSS', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( M.EQ.0 .OR. N.EQ.0 ) THEN - RANK = 0 - RETURN - END IF -* -* Get machine parameters -* - EPS = DLAMCH( 'P' ) - SFMIN = DLAMCH( 'S' ) - SMLNUM = SFMIN / EPS - BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) -* -* Scale A if max element outside range [SMLNUM,BIGNUM] -* - ANRM = DLANGE( 'M', M, N, A, LDA, WORK ) - IASCL = 0 - IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN -* -* Scale matrix norm up to SMLNUM -* - CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) - IASCL = 1 - ELSE IF( ANRM.GT.BIGNUM ) THEN -* -* Scale matrix norm down to BIGNUM -* - CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) - IASCL = 2 - ELSE IF( ANRM.EQ.ZERO ) THEN -* -* Matrix all zero. Return zero solution. -* - CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) - CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 ) - RANK = 0 - GO TO 70 - END IF -* -* Scale B if max element outside range [SMLNUM,BIGNUM] -* - BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK ) - IBSCL = 0 - IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN -* -* Scale matrix norm up to SMLNUM -* - CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) - IBSCL = 1 - ELSE IF( BNRM.GT.BIGNUM ) THEN -* -* Scale matrix norm down to BIGNUM -* - CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) - IBSCL = 2 - END IF -* -* Overdetermined case -* - IF( M.GE.N ) THEN -* -* Path 1 - overdetermined or exactly determined -* - MM = M - IF( M.GE.MNTHR ) THEN -* -* Path 1a - overdetermined, with many more rows than columns -* - MM = N - ITAU = 1 - IWORK = ITAU + N -* -* Compute A=Q*R -* (Workspace: need 2*N, prefer N+N*NB) -* - CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), - $ LWORK-IWORK+1, INFO ) -* -* Multiply B by transpose(Q) -* (Workspace: need N+NRHS, prefer N+NRHS*NB) -* - CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B, - $ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) -* -* Zero out below R -* - IF( N.GT.1 ) - $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA ) - END IF -* - IE = 1 - ITAUQ = IE + N - ITAUP = ITAUQ + N - IWORK = ITAUP + N -* -* Bidiagonalize R in A -* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) -* - CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), - $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, - $ INFO ) -* -* Multiply B by transpose of left bidiagonalizing vectors of R -* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) -* - CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ), - $ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) -* -* Generate right bidiagonalizing vectors of R in A -* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) -* - CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), - $ WORK( IWORK ), LWORK-IWORK+1, INFO ) - IWORK = IE + N -* -* Perform bidiagonal QR iteration -* multiply B by transpose of left singular vectors -* compute right singular vectors in A -* (Workspace: need BDSPAC) -* - CALL DBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, VDUM, - $ 1, B, LDB, WORK( IWORK ), INFO ) - IF( INFO.NE.0 ) - $ GO TO 70 -* -* Multiply B by reciprocals of singular values -* - THR = MAX( RCOND*S( 1 ), SFMIN ) - IF( RCOND.LT.ZERO ) - $ THR = MAX( EPS*S( 1 ), SFMIN ) - RANK = 0 - DO 10 I = 1, N - IF( S( I ).GT.THR ) THEN - CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB ) - RANK = RANK + 1 - ELSE - CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB ) - END IF - 10 CONTINUE -* -* Multiply B by right singular vectors -* (Workspace: need N, prefer N*NRHS) -* - IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN - CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO, - $ WORK, LDB ) - CALL DLACPY( 'G', N, NRHS, WORK, LDB, B, LDB ) - ELSE IF( NRHS.GT.1 ) THEN - CHUNK = LWORK / N - DO 20 I = 1, NRHS, CHUNK - BL = MIN( NRHS-I+1, CHUNK ) - CALL DGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ), - $ LDB, ZERO, WORK, N ) - CALL DLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB ) - 20 CONTINUE - ELSE - CALL DGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 ) - CALL DCOPY( N, WORK, 1, B, 1 ) - END IF -* - ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+ - $ MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN -* -* Path 2a - underdetermined, with many more columns than rows -* and sufficient workspace for an efficient algorithm -* - LDWORK = M - IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ), - $ M*LDA+M+M*NRHS ) )LDWORK = LDA - ITAU = 1 - IWORK = M + 1 -* -* Compute A=L*Q -* (Workspace: need 2*M, prefer M+M*NB) -* - CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), - $ LWORK-IWORK+1, INFO ) - IL = IWORK -* -* Copy L to WORK(IL), zeroing out above it -* - CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK ) - CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ), - $ LDWORK ) - IE = IL + LDWORK*M - ITAUQ = IE + M - ITAUP = ITAUQ + M - IWORK = ITAUP + M -* -* Bidiagonalize L in WORK(IL) -* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) -* - CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ), - $ WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ), - $ LWORK-IWORK+1, INFO ) -* -* Multiply B by transpose of left bidiagonalizing vectors of L -* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) -* - CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK, - $ WORK( ITAUQ ), B, LDB, WORK( IWORK ), - $ LWORK-IWORK+1, INFO ) -* -* Generate right bidiagonalizing vectors of R in WORK(IL) -* (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) -* - CALL DORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ), - $ WORK( IWORK ), LWORK-IWORK+1, INFO ) - IWORK = IE + M -* -* Perform bidiagonal QR iteration, -* computing right singular vectors of L in WORK(IL) and -* multiplying B by transpose of left singular vectors -* (Workspace: need M*M+M+BDSPAC) -* - CALL DBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ), - $ LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO ) - IF( INFO.NE.0 ) - $ GO TO 70 -* -* Multiply B by reciprocals of singular values -* - THR = MAX( RCOND*S( 1 ), SFMIN ) - IF( RCOND.LT.ZERO ) - $ THR = MAX( EPS*S( 1 ), SFMIN ) - RANK = 0 - DO 30 I = 1, M - IF( S( I ).GT.THR ) THEN - CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB ) - RANK = RANK + 1 - ELSE - CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB ) - END IF - 30 CONTINUE - IWORK = IE -* -* Multiply B by right singular vectors of L in WORK(IL) -* (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) -* - IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN - CALL DGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK, - $ B, LDB, ZERO, WORK( IWORK ), LDB ) - CALL DLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB ) - ELSE IF( NRHS.GT.1 ) THEN - CHUNK = ( LWORK-IWORK+1 ) / M - DO 40 I = 1, NRHS, CHUNK - BL = MIN( NRHS-I+1, CHUNK ) - CALL DGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK, - $ B( 1, I ), LDB, ZERO, WORK( IWORK ), M ) - CALL DLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ), - $ LDB ) - 40 CONTINUE - ELSE - CALL DGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ), - $ 1, ZERO, WORK( IWORK ), 1 ) - CALL DCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 ) - END IF -* -* Zero out below first M rows of B -* - CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB ) - IWORK = ITAU + M -* -* Multiply transpose(Q) by B -* (Workspace: need M+NRHS, prefer M+NRHS*NB) -* - CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B, - $ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) -* - ELSE -* -* Path 2 - remaining underdetermined cases -* - IE = 1 - ITAUQ = IE + M - ITAUP = ITAUQ + M - IWORK = ITAUP + M -* -* Bidiagonalize A -* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) -* - CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), - $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, - $ INFO ) -* -* Multiply B by transpose of left bidiagonalizing vectors -* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) -* - CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ), - $ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) -* -* Generate right bidiagonalizing vectors in A -* (Workspace: need 4*M, prefer 3*M+M*NB) -* - CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ), - $ WORK( IWORK ), LWORK-IWORK+1, INFO ) - IWORK = IE + M -* -* Perform bidiagonal QR iteration, -* computing right singular vectors of A in A and -* multiplying B by transpose of left singular vectors -* (Workspace: need BDSPAC) -* - CALL DBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, VDUM, - $ 1, B, LDB, WORK( IWORK ), INFO ) - IF( INFO.NE.0 ) - $ GO TO 70 -* -* Multiply B by reciprocals of singular values -* - THR = MAX( RCOND*S( 1 ), SFMIN ) - IF( RCOND.LT.ZERO ) - $ THR = MAX( EPS*S( 1 ), SFMIN ) - RANK = 0 - DO 50 I = 1, M - IF( S( I ).GT.THR ) THEN - CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB ) - RANK = RANK + 1 - ELSE - CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB ) - END IF - 50 CONTINUE -* -* Multiply B by right singular vectors of A -* (Workspace: need N, prefer N*NRHS) -* - IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN - CALL DGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO, - $ WORK, LDB ) - CALL DLACPY( 'F', N, NRHS, WORK, LDB, B, LDB ) - ELSE IF( NRHS.GT.1 ) THEN - CHUNK = LWORK / N - DO 60 I = 1, NRHS, CHUNK - BL = MIN( NRHS-I+1, CHUNK ) - CALL DGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ), - $ LDB, ZERO, WORK, N ) - CALL DLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB ) - 60 CONTINUE - ELSE - CALL DGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 ) - CALL DCOPY( N, WORK, 1, B, 1 ) - END IF - END IF -* -* Undo scaling -* - IF( IASCL.EQ.1 ) THEN - CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) - CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN, - $ INFO ) - ELSE IF( IASCL.EQ.2 ) THEN - CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) - CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN, - $ INFO ) - END IF - IF( IBSCL.EQ.1 ) THEN - CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) - ELSE IF( IBSCL.EQ.2 ) THEN - CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) - END IF -* - 70 CONTINUE - WORK( 1 ) = MAXWRK - RETURN -* -* End of DGELSS -* - END |