summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dgelss.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dgelss.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dgelss.f')
-rw-r--r--src/lib/lapack/dgelss.f617
1 files changed, 0 insertions, 617 deletions
diff --git a/src/lib/lapack/dgelss.f b/src/lib/lapack/dgelss.f
deleted file mode 100644
index f024e138..00000000
--- a/src/lib/lapack/dgelss.f
+++ /dev/null
@@ -1,617 +0,0 @@
- SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
- $ WORK, LWORK, INFO )
-*
-* -- LAPACK driver routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
- DOUBLE PRECISION RCOND
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* DGELSS computes the minimum norm solution to a real linear least
-* squares problem:
-*
-* Minimize 2-norm(| b - A*x |).
-*
-* using the singular value decomposition (SVD) of A. A is an M-by-N
-* matrix which may be rank-deficient.
-*
-* Several right hand side vectors b and solution vectors x can be
-* handled in a single call; they are stored as the columns of the
-* M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
-* X.
-*
-* The effective rank of A is determined by treating as zero those
-* singular values which are less than RCOND times the largest singular
-* value.
-*
-* Arguments
-* =========
-*
-* M (input) INTEGER
-* The number of rows of the matrix A. M >= 0.
-*
-* N (input) INTEGER
-* The number of columns of the matrix A. N >= 0.
-*
-* NRHS (input) INTEGER
-* The number of right hand sides, i.e., the number of columns
-* of the matrices B and X. NRHS >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
-* On entry, the M-by-N matrix A.
-* On exit, the first min(m,n) rows of A are overwritten with
-* its right singular vectors, stored rowwise.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,M).
-*
-* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
-* On entry, the M-by-NRHS right hand side matrix B.
-* On exit, B is overwritten by the N-by-NRHS solution
-* matrix X. If m >= n and RANK = n, the residual
-* sum-of-squares for the solution in the i-th column is given
-* by the sum of squares of elements n+1:m in that column.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,max(M,N)).
-*
-* S (output) DOUBLE PRECISION array, dimension (min(M,N))
-* The singular values of A in decreasing order.
-* The condition number of A in the 2-norm = S(1)/S(min(m,n)).
-*
-* RCOND (input) DOUBLE PRECISION
-* RCOND is used to determine the effective rank of A.
-* Singular values S(i) <= RCOND*S(1) are treated as zero.
-* If RCOND < 0, machine precision is used instead.
-*
-* RANK (output) INTEGER
-* The effective rank of A, i.e., the number of singular values
-* which are greater than RCOND*S(1).
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= 1, and also:
-* LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
-* For good performance, LWORK should generally be larger.
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-* > 0: the algorithm for computing the SVD failed to converge;
-* if INFO = i, i off-diagonal elements of an intermediate
-* bidiagonal form did not converge to zero.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
-* ..
-* .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL,
- $ ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
- $ MAXWRK, MINMN, MINWRK, MM, MNTHR
- DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
-* ..
-* .. Local Arrays ..
- DOUBLE PRECISION VDUM( 1 )
-* ..
-* .. External Subroutines ..
- EXTERNAL DBDSQR, DCOPY, DGEBRD, DGELQF, DGEMM, DGEMV,
- $ DGEQRF, DLABAD, DLACPY, DLASCL, DLASET, DORGBR,
- $ DORMBR, DORMLQ, DORMQR, DRSCL, XERBLA
-* ..
-* .. External Functions ..
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL ILAENV, DLAMCH, DLANGE
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
-* ..
-* .. Executable Statements ..
-*
-* Test the input arguments
-*
- INFO = 0
- MINMN = MIN( M, N )
- MAXMN = MAX( M, N )
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
- INFO = -7
- END IF
-*
-* Compute workspace
-* (Note: Comments in the code beginning "Workspace:" describe the
-* minimal amount of workspace needed at that point in the code,
-* as well as the preferred amount for good performance.
-* NB refers to the optimal block size for the immediately
-* following subroutine, as returned by ILAENV.)
-*
- IF( INFO.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- IF( MINMN.GT.0 ) THEN
- MM = M
- MNTHR = ILAENV( 6, 'DGELSS', ' ', M, N, NRHS, -1 )
- IF( M.GE.N .AND. M.GE.MNTHR ) THEN
-*
-* Path 1a - overdetermined, with many more rows than
-* columns
-*
- MM = N
- MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'DGEQRF', ' ', M,
- $ N, -1, -1 ) )
- MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'DORMQR', 'LT',
- $ M, NRHS, N, -1 ) )
- END IF
- IF( M.GE.N ) THEN
-*
-* Path 1 - overdetermined or exactly determined
-*
-* Compute workspace needed for DBDSQR
-*
- BDSPAC = MAX( 1, 5*N )
- MAXWRK = MAX( MAXWRK, 3*N + ( MM + N )*ILAENV( 1,
- $ 'DGEBRD', ' ', MM, N, -1, -1 ) )
- MAXWRK = MAX( MAXWRK, 3*N + NRHS*ILAENV( 1, 'DORMBR',
- $ 'QLT', MM, NRHS, N, -1 ) )
- MAXWRK = MAX( MAXWRK, 3*N + ( N - 1 )*ILAENV( 1,
- $ 'DORGBR', 'P', N, N, N, -1 ) )
- MAXWRK = MAX( MAXWRK, BDSPAC )
- MAXWRK = MAX( MAXWRK, N*NRHS )
- MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC )
- MAXWRK = MAX( MINWRK, MAXWRK )
- END IF
- IF( N.GT.M ) THEN
-*
-* Compute workspace needed for DBDSQR
-*
- BDSPAC = MAX( 1, 5*M )
- MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC )
- IF( N.GE.MNTHR ) THEN
-*
-* Path 2a - underdetermined, with many more columns
-* than rows
-*
- MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1,
- $ -1 )
- MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
- $ 'DGEBRD', ' ', M, M, -1, -1 ) )
- MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
- $ 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
- MAXWRK = MAX( MAXWRK, M*M + 4*M +
- $ ( M - 1 )*ILAENV( 1, 'DORGBR', 'P', M,
- $ M, M, -1 ) )
- MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC )
- IF( NRHS.GT.1 ) THEN
- MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
- ELSE
- MAXWRK = MAX( MAXWRK, M*M + 2*M )
- END IF
- MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1, 'DORMLQ',
- $ 'LT', N, NRHS, M, -1 ) )
- ELSE
-*
-* Path 2 - underdetermined
-*
- MAXWRK = 3*M + ( N + M )*ILAENV( 1, 'DGEBRD', ' ', M,
- $ N, -1, -1 )
- MAXWRK = MAX( MAXWRK, 3*M + NRHS*ILAENV( 1, 'DORMBR',
- $ 'QLT', M, NRHS, M, -1 ) )
- MAXWRK = MAX( MAXWRK, 3*M + M*ILAENV( 1, 'DORGBR',
- $ 'P', M, N, M, -1 ) )
- MAXWRK = MAX( MAXWRK, BDSPAC )
- MAXWRK = MAX( MAXWRK, N*NRHS )
- END IF
- END IF
- MAXWRK = MAX( MINWRK, MAXWRK )
- END IF
- WORK( 1 ) = MAXWRK
-*
- IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
- $ INFO = -12
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGELSS', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- RANK = 0
- RETURN
- END IF
-*
-* Get machine parameters
-*
- EPS = DLAMCH( 'P' )
- SFMIN = DLAMCH( 'S' )
- SMLNUM = SFMIN / EPS
- BIGNUM = ONE / SMLNUM
- CALL DLABAD( SMLNUM, BIGNUM )
-*
-* Scale A if max element outside range [SMLNUM,BIGNUM]
-*
- ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
- IASCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
-*
-* Scale matrix norm up to SMLNUM
-*
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
- IASCL = 1
- ELSE IF( ANRM.GT.BIGNUM ) THEN
-*
-* Scale matrix norm down to BIGNUM
-*
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
- IASCL = 2
- ELSE IF( ANRM.EQ.ZERO ) THEN
-*
-* Matrix all zero. Return zero solution.
-*
- CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
- CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
- RANK = 0
- GO TO 70
- END IF
-*
-* Scale B if max element outside range [SMLNUM,BIGNUM]
-*
- BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
- IBSCL = 0
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
-*
-* Scale matrix norm up to SMLNUM
-*
- CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 1
- ELSE IF( BNRM.GT.BIGNUM ) THEN
-*
-* Scale matrix norm down to BIGNUM
-*
- CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
- IBSCL = 2
- END IF
-*
-* Overdetermined case
-*
- IF( M.GE.N ) THEN
-*
-* Path 1 - overdetermined or exactly determined
-*
- MM = M
- IF( M.GE.MNTHR ) THEN
-*
-* Path 1a - overdetermined, with many more rows than columns
-*
- MM = N
- ITAU = 1
- IWORK = ITAU + N
-*
-* Compute A=Q*R
-* (Workspace: need 2*N, prefer N+N*NB)
-*
- CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
- $ LWORK-IWORK+1, INFO )
-*
-* Multiply B by transpose(Q)
-* (Workspace: need N+NRHS, prefer N+NRHS*NB)
-*
- CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
- $ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
-*
-* Zero out below R
-*
- IF( N.GT.1 )
- $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
- END IF
-*
- IE = 1
- ITAUQ = IE + N
- ITAUP = ITAUQ + N
- IWORK = ITAUP + N
-*
-* Bidiagonalize R in A
-* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
-*
- CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ INFO )
-*
-* Multiply B by transpose of left bidiagonalizing vectors of R
-* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
-*
- CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
- $ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
-*
-* Generate right bidiagonalizing vectors of R in A
-* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
-*
- CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, INFO )
- IWORK = IE + N
-*
-* Perform bidiagonal QR iteration
-* multiply B by transpose of left singular vectors
-* compute right singular vectors in A
-* (Workspace: need BDSPAC)
-*
- CALL DBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, VDUM,
- $ 1, B, LDB, WORK( IWORK ), INFO )
- IF( INFO.NE.0 )
- $ GO TO 70
-*
-* Multiply B by reciprocals of singular values
-*
- THR = MAX( RCOND*S( 1 ), SFMIN )
- IF( RCOND.LT.ZERO )
- $ THR = MAX( EPS*S( 1 ), SFMIN )
- RANK = 0
- DO 10 I = 1, N
- IF( S( I ).GT.THR ) THEN
- CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
- RANK = RANK + 1
- ELSE
- CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
- END IF
- 10 CONTINUE
-*
-* Multiply B by right singular vectors
-* (Workspace: need N, prefer N*NRHS)
-*
- IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
- CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO,
- $ WORK, LDB )
- CALL DLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
- ELSE IF( NRHS.GT.1 ) THEN
- CHUNK = LWORK / N
- DO 20 I = 1, NRHS, CHUNK
- BL = MIN( NRHS-I+1, CHUNK )
- CALL DGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ),
- $ LDB, ZERO, WORK, N )
- CALL DLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
- 20 CONTINUE
- ELSE
- CALL DGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
- CALL DCOPY( N, WORK, 1, B, 1 )
- END IF
-*
- ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
- $ MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
-*
-* Path 2a - underdetermined, with many more columns than rows
-* and sufficient workspace for an efficient algorithm
-*
- LDWORK = M
- IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
- $ M*LDA+M+M*NRHS ) )LDWORK = LDA
- ITAU = 1
- IWORK = M + 1
-*
-* Compute A=L*Q
-* (Workspace: need 2*M, prefer M+M*NB)
-*
- CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
- $ LWORK-IWORK+1, INFO )
- IL = IWORK
-*
-* Copy L to WORK(IL), zeroing out above it
-*
- CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
- CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
- $ LDWORK )
- IE = IL + LDWORK*M
- ITAUQ = IE + M
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
-*
-* Bidiagonalize L in WORK(IL)
-* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
-*
- CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
- $ LWORK-IWORK+1, INFO )
-*
-* Multiply B by transpose of left bidiagonalizing vectors of L
-* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
-*
- CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
- $ WORK( ITAUQ ), B, LDB, WORK( IWORK ),
- $ LWORK-IWORK+1, INFO )
-*
-* Generate right bidiagonalizing vectors of R in WORK(IL)
-* (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB)
-*
- CALL DORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, INFO )
- IWORK = IE + M
-*
-* Perform bidiagonal QR iteration,
-* computing right singular vectors of L in WORK(IL) and
-* multiplying B by transpose of left singular vectors
-* (Workspace: need M*M+M+BDSPAC)
-*
- CALL DBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ),
- $ LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO )
- IF( INFO.NE.0 )
- $ GO TO 70
-*
-* Multiply B by reciprocals of singular values
-*
- THR = MAX( RCOND*S( 1 ), SFMIN )
- IF( RCOND.LT.ZERO )
- $ THR = MAX( EPS*S( 1 ), SFMIN )
- RANK = 0
- DO 30 I = 1, M
- IF( S( I ).GT.THR ) THEN
- CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
- RANK = RANK + 1
- ELSE
- CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
- END IF
- 30 CONTINUE
- IWORK = IE
-*
-* Multiply B by right singular vectors of L in WORK(IL)
-* (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS)
-*
- IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
- CALL DGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK,
- $ B, LDB, ZERO, WORK( IWORK ), LDB )
- CALL DLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
- ELSE IF( NRHS.GT.1 ) THEN
- CHUNK = ( LWORK-IWORK+1 ) / M
- DO 40 I = 1, NRHS, CHUNK
- BL = MIN( NRHS-I+1, CHUNK )
- CALL DGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK,
- $ B( 1, I ), LDB, ZERO, WORK( IWORK ), M )
- CALL DLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
- $ LDB )
- 40 CONTINUE
- ELSE
- CALL DGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ),
- $ 1, ZERO, WORK( IWORK ), 1 )
- CALL DCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
- END IF
-*
-* Zero out below first M rows of B
-*
- CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
- IWORK = ITAU + M
-*
-* Multiply transpose(Q) by B
-* (Workspace: need M+NRHS, prefer M+NRHS*NB)
-*
- CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
- $ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
-*
- ELSE
-*
-* Path 2 - remaining underdetermined cases
-*
- IE = 1
- ITAUQ = IE + M
- ITAUP = ITAUQ + M
- IWORK = ITAUP + M
-*
-* Bidiagonalize A
-* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
-*
- CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
- $ INFO )
-*
-* Multiply B by transpose of left bidiagonalizing vectors
-* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
-*
- CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
- $ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
-*
-* Generate right bidiagonalizing vectors in A
-* (Workspace: need 4*M, prefer 3*M+M*NB)
-*
- CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( IWORK ), LWORK-IWORK+1, INFO )
- IWORK = IE + M
-*
-* Perform bidiagonal QR iteration,
-* computing right singular vectors of A in A and
-* multiplying B by transpose of left singular vectors
-* (Workspace: need BDSPAC)
-*
- CALL DBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, VDUM,
- $ 1, B, LDB, WORK( IWORK ), INFO )
- IF( INFO.NE.0 )
- $ GO TO 70
-*
-* Multiply B by reciprocals of singular values
-*
- THR = MAX( RCOND*S( 1 ), SFMIN )
- IF( RCOND.LT.ZERO )
- $ THR = MAX( EPS*S( 1 ), SFMIN )
- RANK = 0
- DO 50 I = 1, M
- IF( S( I ).GT.THR ) THEN
- CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
- RANK = RANK + 1
- ELSE
- CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
- END IF
- 50 CONTINUE
-*
-* Multiply B by right singular vectors of A
-* (Workspace: need N, prefer N*NRHS)
-*
- IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
- CALL DGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO,
- $ WORK, LDB )
- CALL DLACPY( 'F', N, NRHS, WORK, LDB, B, LDB )
- ELSE IF( NRHS.GT.1 ) THEN
- CHUNK = LWORK / N
- DO 60 I = 1, NRHS, CHUNK
- BL = MIN( NRHS-I+1, CHUNK )
- CALL DGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ),
- $ LDB, ZERO, WORK, N )
- CALL DLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
- 60 CONTINUE
- ELSE
- CALL DGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
- CALL DCOPY( N, WORK, 1, B, 1 )
- END IF
- END IF
-*
-* Undo scaling
-*
- IF( IASCL.EQ.1 ) THEN
- CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
- CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
- $ INFO )
- ELSE IF( IASCL.EQ.2 ) THEN
- CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
- CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
- $ INFO )
- END IF
- IF( IBSCL.EQ.1 ) THEN
- CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
- ELSE IF( IBSCL.EQ.2 ) THEN
- CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
- END IF
-*
- 70 CONTINUE
- WORK( 1 ) = MAXWRK
- RETURN
-*
-* End of DGELSS
-*
- END