diff options
author | jofret | 2009-04-28 07:17:00 +0000 |
---|---|---|
committer | jofret | 2009-04-28 07:17:00 +0000 |
commit | 8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch) | |
tree | 3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dgegs.f | |
parent | 9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff) | |
download | scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2 scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip |
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dgegs.f')
-rw-r--r-- | src/lib/lapack/dgegs.f | 438 |
1 files changed, 0 insertions, 438 deletions
diff --git a/src/lib/lapack/dgegs.f b/src/lib/lapack/dgegs.f deleted file mode 100644 index 85c32531..00000000 --- a/src/lib/lapack/dgegs.f +++ /dev/null @@ -1,438 +0,0 @@ - SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR, - $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK, - $ LWORK, INFO ) -* -* -- LAPACK driver routine (version 3.1) -- -* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. -* November 2006 -* -* .. Scalar Arguments .. - CHARACTER JOBVSL, JOBVSR - INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N -* .. -* .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), - $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), - $ VSR( LDVSR, * ), WORK( * ) -* .. -* -* Purpose -* ======= -* -* This routine is deprecated and has been replaced by routine DGGES. -* -* DGEGS computes the eigenvalues, real Schur form, and, optionally, -* left and or/right Schur vectors of a real matrix pair (A,B). -* Given two square matrices A and B, the generalized real Schur -* factorization has the form -* -* A = Q*S*Z**T, B = Q*T*Z**T -* -* where Q and Z are orthogonal matrices, T is upper triangular, and S -* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal -* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs -* of eigenvalues of (A,B). The columns of Q are the left Schur vectors -* and the columns of Z are the right Schur vectors. -* -* If only the eigenvalues of (A,B) are needed, the driver routine -* DGEGV should be used instead. See DGEGV for a description of the -* eigenvalues of the generalized nonsymmetric eigenvalue problem -* (GNEP). -* -* Arguments -* ========= -* -* JOBVSL (input) CHARACTER*1 -* = 'N': do not compute the left Schur vectors; -* = 'V': compute the left Schur vectors (returned in VSL). -* -* JOBVSR (input) CHARACTER*1 -* = 'N': do not compute the right Schur vectors; -* = 'V': compute the right Schur vectors (returned in VSR). -* -* N (input) INTEGER -* The order of the matrices A, B, VSL, and VSR. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) -* On entry, the matrix A. -* On exit, the upper quasi-triangular matrix S from the -* generalized real Schur factorization. -* -* LDA (input) INTEGER -* The leading dimension of A. LDA >= max(1,N). -* -* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) -* On entry, the matrix B. -* On exit, the upper triangular matrix T from the generalized -* real Schur factorization. -* -* LDB (input) INTEGER -* The leading dimension of B. LDB >= max(1,N). -* -* ALPHAR (output) DOUBLE PRECISION array, dimension (N) -* The real parts of each scalar alpha defining an eigenvalue -* of GNEP. -* -* ALPHAI (output) DOUBLE PRECISION array, dimension (N) -* The imaginary parts of each scalar alpha defining an -* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th -* eigenvalue is real; if positive, then the j-th and (j+1)-st -* eigenvalues are a complex conjugate pair, with -* ALPHAI(j+1) = -ALPHAI(j). -* -* BETA (output) DOUBLE PRECISION array, dimension (N) -* The scalars beta that define the eigenvalues of GNEP. -* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and -* beta = BETA(j) represent the j-th eigenvalue of the matrix -* pair (A,B), in one of the forms lambda = alpha/beta or -* mu = beta/alpha. Since either lambda or mu may overflow, -* they should not, in general, be computed. -* -* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N) -* If JOBVSL = 'V', the matrix of left Schur vectors Q. -* Not referenced if JOBVSL = 'N'. -* -* LDVSL (input) INTEGER -* The leading dimension of the matrix VSL. LDVSL >=1, and -* if JOBVSL = 'V', LDVSL >= N. -* -* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N) -* If JOBVSR = 'V', the matrix of right Schur vectors Z. -* Not referenced if JOBVSR = 'N'. -* -* LDVSR (input) INTEGER -* The leading dimension of the matrix VSR. LDVSR >= 1, and -* if JOBVSR = 'V', LDVSR >= N. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,4*N). -* For good performance, LWORK must generally be larger. -* To compute the optimal value of LWORK, call ILAENV to get -* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: -* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR -* The optimal LWORK is 2*N + N*(NB+1). -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* = 1,...,N: -* The QZ iteration failed. (A,B) are not in Schur -* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should -* be correct for j=INFO+1,...,N. -* > N: errors that usually indicate LAPACK problems: -* =N+1: error return from DGGBAL -* =N+2: error return from DGEQRF -* =N+3: error return from DORMQR -* =N+4: error return from DORGQR -* =N+5: error return from DGGHRD -* =N+6: error return from DHGEQZ (other than failed -* iteration) -* =N+7: error return from DGGBAK (computing VSL) -* =N+8: error return from DGGBAK (computing VSR) -* =N+9: error return from DLASCL (various places) -* -* ===================================================================== -* -* .. Parameters .. - DOUBLE PRECISION ZERO, ONE - PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) -* .. -* .. Local Scalars .. - LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY - INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO, - $ IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN, - $ LWKOPT, NB, NB1, NB2, NB3 - DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, - $ SAFMIN, SMLNUM -* .. -* .. External Subroutines .. - EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY, - $ DLASCL, DLASET, DORGQR, DORMQR, XERBLA -* .. -* .. External Functions .. - LOGICAL LSAME - INTEGER ILAENV - DOUBLE PRECISION DLAMCH, DLANGE - EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE -* .. -* .. Intrinsic Functions .. - INTRINSIC INT, MAX -* .. -* .. Executable Statements .. -* -* Decode the input arguments -* - IF( LSAME( JOBVSL, 'N' ) ) THEN - IJOBVL = 1 - ILVSL = .FALSE. - ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN - IJOBVL = 2 - ILVSL = .TRUE. - ELSE - IJOBVL = -1 - ILVSL = .FALSE. - END IF -* - IF( LSAME( JOBVSR, 'N' ) ) THEN - IJOBVR = 1 - ILVSR = .FALSE. - ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN - IJOBVR = 2 - ILVSR = .TRUE. - ELSE - IJOBVR = -1 - ILVSR = .FALSE. - END IF -* -* Test the input arguments -* - LWKMIN = MAX( 4*N, 1 ) - LWKOPT = LWKMIN - WORK( 1 ) = LWKOPT - LQUERY = ( LWORK.EQ.-1 ) - INFO = 0 - IF( IJOBVL.LE.0 ) THEN - INFO = -1 - ELSE IF( IJOBVR.LE.0 ) THEN - INFO = -2 - ELSE IF( N.LT.0 ) THEN - INFO = -3 - ELSE IF( LDA.LT.MAX( 1, N ) ) THEN - INFO = -5 - ELSE IF( LDB.LT.MAX( 1, N ) ) THEN - INFO = -7 - ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN - INFO = -12 - ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN - INFO = -14 - ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN - INFO = -16 - END IF -* - IF( INFO.EQ.0 ) THEN - NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 ) - NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 ) - NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 ) - NB = MAX( NB1, NB2, NB3 ) - LOPT = 2*N + N*( NB+1 ) - WORK( 1 ) = LOPT - END IF -* - IF( INFO.NE.0 ) THEN - CALL XERBLA( 'DGEGS ', -INFO ) - RETURN - ELSE IF( LQUERY ) THEN - RETURN - END IF -* -* Quick return if possible -* - IF( N.EQ.0 ) - $ RETURN -* -* Get machine constants -* - EPS = DLAMCH( 'E' )*DLAMCH( 'B' ) - SAFMIN = DLAMCH( 'S' ) - SMLNUM = N*SAFMIN / EPS - BIGNUM = ONE / SMLNUM -* -* Scale A if max element outside range [SMLNUM,BIGNUM] -* - ANRM = DLANGE( 'M', N, N, A, LDA, WORK ) - ILASCL = .FALSE. - IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN - ANRMTO = SMLNUM - ILASCL = .TRUE. - ELSE IF( ANRM.GT.BIGNUM ) THEN - ANRMTO = BIGNUM - ILASCL = .TRUE. - END IF -* - IF( ILASCL ) THEN - CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - END IF -* -* Scale B if max element outside range [SMLNUM,BIGNUM] -* - BNRM = DLANGE( 'M', N, N, B, LDB, WORK ) - ILBSCL = .FALSE. - IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN - BNRMTO = SMLNUM - ILBSCL = .TRUE. - ELSE IF( BNRM.GT.BIGNUM ) THEN - BNRMTO = BIGNUM - ILBSCL = .TRUE. - END IF -* - IF( ILBSCL ) THEN - CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - END IF -* -* Permute the matrix to make it more nearly triangular -* Workspace layout: (2*N words -- "work..." not actually used) -* left_permutation, right_permutation, work... -* - ILEFT = 1 - IRIGHT = N + 1 - IWORK = IRIGHT + N - CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ), - $ WORK( IRIGHT ), WORK( IWORK ), IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 1 - GO TO 10 - END IF -* -* Reduce B to triangular form, and initialize VSL and/or VSR -* Workspace layout: ("work..." must have at least N words) -* left_permutation, right_permutation, tau, work... -* - IROWS = IHI + 1 - ILO - ICOLS = N + 1 - ILO - ITAU = IWORK - IWORK = ITAU + IROWS - CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), - $ WORK( IWORK ), LWORK+1-IWORK, IINFO ) - IF( IINFO.GE.0 ) - $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) - IF( IINFO.NE.0 ) THEN - INFO = N + 2 - GO TO 10 - END IF -* - CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, - $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ), - $ LWORK+1-IWORK, IINFO ) - IF( IINFO.GE.0 ) - $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) - IF( IINFO.NE.0 ) THEN - INFO = N + 3 - GO TO 10 - END IF -* - IF( ILVSL ) THEN - CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL ) - CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, - $ VSL( ILO+1, ILO ), LDVSL ) - CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL, - $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK, - $ IINFO ) - IF( IINFO.GE.0 ) - $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) - IF( IINFO.NE.0 ) THEN - INFO = N + 4 - GO TO 10 - END IF - END IF -* - IF( ILVSR ) - $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR ) -* -* Reduce to generalized Hessenberg form -* - CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL, - $ LDVSL, VSR, LDVSR, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 5 - GO TO 10 - END IF -* -* Perform QZ algorithm, computing Schur vectors if desired -* Workspace layout: ("work..." must have at least 1 word) -* left_permutation, right_permutation, work... -* - IWORK = ITAU - CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, - $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, - $ WORK( IWORK ), LWORK+1-IWORK, IINFO ) - IF( IINFO.GE.0 ) - $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 ) - IF( IINFO.NE.0 ) THEN - IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN - INFO = IINFO - ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN - INFO = IINFO - N - ELSE - INFO = N + 6 - END IF - GO TO 10 - END IF -* -* Apply permutation to VSL and VSR -* - IF( ILVSL ) THEN - CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ), - $ WORK( IRIGHT ), N, VSL, LDVSL, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 7 - GO TO 10 - END IF - END IF - IF( ILVSR ) THEN - CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ), - $ WORK( IRIGHT ), N, VSR, LDVSR, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 8 - GO TO 10 - END IF - END IF -* -* Undo scaling -* - IF( ILASCL ) THEN - CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N, - $ IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N, - $ IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - END IF -* - IF( ILBSCL ) THEN - CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO ) - IF( IINFO.NE.0 ) THEN - INFO = N + 9 - RETURN - END IF - END IF -* - 10 CONTINUE - WORK( 1 ) = LWKOPT -* - RETURN -* -* End of DGEGS -* - END |