summaryrefslogtreecommitdiff
path: root/src/lib/lapack/dgegs.f
diff options
context:
space:
mode:
authorjofret2009-04-28 07:17:00 +0000
committerjofret2009-04-28 07:17:00 +0000
commit8c8d2f518968ce7057eec6aa5cd5aec8faab861a (patch)
tree3dd1788b71d6a3ce2b73d2d475a3133580e17530 /src/lib/lapack/dgegs.f
parent9f652ffc16a310ac6641a9766c5b9e2671e0e9cb (diff)
downloadscilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.gz
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.tar.bz2
scilab2c-8c8d2f518968ce7057eec6aa5cd5aec8faab861a.zip
Moving lapack to right place
Diffstat (limited to 'src/lib/lapack/dgegs.f')
-rw-r--r--src/lib/lapack/dgegs.f438
1 files changed, 0 insertions, 438 deletions
diff --git a/src/lib/lapack/dgegs.f b/src/lib/lapack/dgegs.f
deleted file mode 100644
index 85c32531..00000000
--- a/src/lib/lapack/dgegs.f
+++ /dev/null
@@ -1,438 +0,0 @@
- SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
- $ ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
- $ LWORK, INFO )
-*
-* -- LAPACK driver routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER JOBVSL, JOBVSR
- INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
- $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
- $ VSR( LDVSR, * ), WORK( * )
-* ..
-*
-* Purpose
-* =======
-*
-* This routine is deprecated and has been replaced by routine DGGES.
-*
-* DGEGS computes the eigenvalues, real Schur form, and, optionally,
-* left and or/right Schur vectors of a real matrix pair (A,B).
-* Given two square matrices A and B, the generalized real Schur
-* factorization has the form
-*
-* A = Q*S*Z**T, B = Q*T*Z**T
-*
-* where Q and Z are orthogonal matrices, T is upper triangular, and S
-* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
-* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
-* of eigenvalues of (A,B). The columns of Q are the left Schur vectors
-* and the columns of Z are the right Schur vectors.
-*
-* If only the eigenvalues of (A,B) are needed, the driver routine
-* DGEGV should be used instead. See DGEGV for a description of the
-* eigenvalues of the generalized nonsymmetric eigenvalue problem
-* (GNEP).
-*
-* Arguments
-* =========
-*
-* JOBVSL (input) CHARACTER*1
-* = 'N': do not compute the left Schur vectors;
-* = 'V': compute the left Schur vectors (returned in VSL).
-*
-* JOBVSR (input) CHARACTER*1
-* = 'N': do not compute the right Schur vectors;
-* = 'V': compute the right Schur vectors (returned in VSR).
-*
-* N (input) INTEGER
-* The order of the matrices A, B, VSL, and VSR. N >= 0.
-*
-* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
-* On entry, the matrix A.
-* On exit, the upper quasi-triangular matrix S from the
-* generalized real Schur factorization.
-*
-* LDA (input) INTEGER
-* The leading dimension of A. LDA >= max(1,N).
-*
-* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
-* On entry, the matrix B.
-* On exit, the upper triangular matrix T from the generalized
-* real Schur factorization.
-*
-* LDB (input) INTEGER
-* The leading dimension of B. LDB >= max(1,N).
-*
-* ALPHAR (output) DOUBLE PRECISION array, dimension (N)
-* The real parts of each scalar alpha defining an eigenvalue
-* of GNEP.
-*
-* ALPHAI (output) DOUBLE PRECISION array, dimension (N)
-* The imaginary parts of each scalar alpha defining an
-* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
-* eigenvalue is real; if positive, then the j-th and (j+1)-st
-* eigenvalues are a complex conjugate pair, with
-* ALPHAI(j+1) = -ALPHAI(j).
-*
-* BETA (output) DOUBLE PRECISION array, dimension (N)
-* The scalars beta that define the eigenvalues of GNEP.
-* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
-* beta = BETA(j) represent the j-th eigenvalue of the matrix
-* pair (A,B), in one of the forms lambda = alpha/beta or
-* mu = beta/alpha. Since either lambda or mu may overflow,
-* they should not, in general, be computed.
-*
-* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N)
-* If JOBVSL = 'V', the matrix of left Schur vectors Q.
-* Not referenced if JOBVSL = 'N'.
-*
-* LDVSL (input) INTEGER
-* The leading dimension of the matrix VSL. LDVSL >=1, and
-* if JOBVSL = 'V', LDVSL >= N.
-*
-* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N)
-* If JOBVSR = 'V', the matrix of right Schur vectors Z.
-* Not referenced if JOBVSR = 'N'.
-*
-* LDVSR (input) INTEGER
-* The leading dimension of the matrix VSR. LDVSR >= 1, and
-* if JOBVSR = 'V', LDVSR >= N.
-*
-* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
-* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-*
-* LWORK (input) INTEGER
-* The dimension of the array WORK. LWORK >= max(1,4*N).
-* For good performance, LWORK must generally be larger.
-* To compute the optimal value of LWORK, call ILAENV to get
-* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:
-* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
-* The optimal LWORK is 2*N + N*(NB+1).
-*
-* If LWORK = -1, then a workspace query is assumed; the routine
-* only calculates the optimal size of the WORK array, returns
-* this value as the first entry of the WORK array, and no error
-* message related to LWORK is issued by XERBLA.
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value.
-* = 1,...,N:
-* The QZ iteration failed. (A,B) are not in Schur
-* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
-* be correct for j=INFO+1,...,N.
-* > N: errors that usually indicate LAPACK problems:
-* =N+1: error return from DGGBAL
-* =N+2: error return from DGEQRF
-* =N+3: error return from DORMQR
-* =N+4: error return from DORGQR
-* =N+5: error return from DGGHRD
-* =N+6: error return from DHGEQZ (other than failed
-* iteration)
-* =N+7: error return from DGGBAK (computing VSL)
-* =N+8: error return from DGGBAK (computing VSR)
-* =N+9: error return from DLASCL (various places)
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
-* ..
-* .. Local Scalars ..
- LOGICAL ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
- INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
- $ IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
- $ LWKOPT, NB, NB1, NB2, NB3
- DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
- $ SAFMIN, SMLNUM
-* ..
-* .. External Subroutines ..
- EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
- $ DLASCL, DLASET, DORGQR, DORMQR, XERBLA
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANGE
- EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC INT, MAX
-* ..
-* .. Executable Statements ..
-*
-* Decode the input arguments
-*
- IF( LSAME( JOBVSL, 'N' ) ) THEN
- IJOBVL = 1
- ILVSL = .FALSE.
- ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
- IJOBVL = 2
- ILVSL = .TRUE.
- ELSE
- IJOBVL = -1
- ILVSL = .FALSE.
- END IF
-*
- IF( LSAME( JOBVSR, 'N' ) ) THEN
- IJOBVR = 1
- ILVSR = .FALSE.
- ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
- IJOBVR = 2
- ILVSR = .TRUE.
- ELSE
- IJOBVR = -1
- ILVSR = .FALSE.
- END IF
-*
-* Test the input arguments
-*
- LWKMIN = MAX( 4*N, 1 )
- LWKOPT = LWKMIN
- WORK( 1 ) = LWKOPT
- LQUERY = ( LWORK.EQ.-1 )
- INFO = 0
- IF( IJOBVL.LE.0 ) THEN
- INFO = -1
- ELSE IF( IJOBVR.LE.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
- INFO = -12
- ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
- INFO = -14
- ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -16
- END IF
-*
- IF( INFO.EQ.0 ) THEN
- NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
- NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
- NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
- NB = MAX( NB1, NB2, NB3 )
- LOPT = 2*N + N*( NB+1 )
- WORK( 1 ) = LOPT
- END IF
-*
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGEGS ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
-*
-* Quick return if possible
-*
- IF( N.EQ.0 )
- $ RETURN
-*
-* Get machine constants
-*
- EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
- SAFMIN = DLAMCH( 'S' )
- SMLNUM = N*SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
-*
-* Scale A if max element outside range [SMLNUM,BIGNUM]
-*
- ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
- ILASCL = .FALSE.
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ANRMTO = SMLNUM
- ILASCL = .TRUE.
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ANRMTO = BIGNUM
- ILASCL = .TRUE.
- END IF
-*
- IF( ILASCL ) THEN
- CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
-*
-* Scale B if max element outside range [SMLNUM,BIGNUM]
-*
- BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
- ILBSCL = .FALSE.
- IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
- BNRMTO = SMLNUM
- ILBSCL = .TRUE.
- ELSE IF( BNRM.GT.BIGNUM ) THEN
- BNRMTO = BIGNUM
- ILBSCL = .TRUE.
- END IF
-*
- IF( ILBSCL ) THEN
- CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
-*
-* Permute the matrix to make it more nearly triangular
-* Workspace layout: (2*N words -- "work..." not actually used)
-* left_permutation, right_permutation, work...
-*
- ILEFT = 1
- IRIGHT = N + 1
- IWORK = IRIGHT + N
- CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), WORK( IWORK ), IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 1
- GO TO 10
- END IF
-*
-* Reduce B to triangular form, and initialize VSL and/or VSR
-* Workspace layout: ("work..." must have at least N words)
-* left_permutation, right_permutation, tau, work...
-*
- IROWS = IHI + 1 - ILO
- ICOLS = N + 1 - ILO
- ITAU = IWORK
- IWORK = ITAU + IROWS
- CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 2
- GO TO 10
- END IF
-*
- CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
- $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
- $ LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 3
- GO TO 10
- END IF
-*
- IF( ILVSL ) THEN
- CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
- CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
- $ VSL( ILO+1, ILO ), LDVSL )
- CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
- $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
- $ IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 4
- GO TO 10
- END IF
- END IF
-*
- IF( ILVSR )
- $ CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
-*
-* Reduce to generalized Hessenberg form
-*
- CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
- $ LDVSL, VSR, LDVSR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 5
- GO TO 10
- END IF
-*
-* Perform QZ algorithm, computing Schur vectors if desired
-* Workspace layout: ("work..." must have at least 1 word)
-* left_permutation, right_permutation, work...
-*
- IWORK = ITAU
- CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
- $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
- $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
- IF( IINFO.GE.0 )
- $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
- IF( IINFO.NE.0 ) THEN
- IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
- INFO = IINFO
- ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
- INFO = IINFO - N
- ELSE
- INFO = N + 6
- END IF
- GO TO 10
- END IF
-*
-* Apply permutation to VSL and VSR
-*
- IF( ILVSL ) THEN
- CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 7
- GO TO 10
- END IF
- END IF
- IF( ILVSR ) THEN
- CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
- $ WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 8
- GO TO 10
- END IF
- END IF
-*
-* Undo scaling
-*
- IF( ILASCL ) THEN
- CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
- $ IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
-*
- IF( ILBSCL ) THEN
- CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
- IF( IINFO.NE.0 ) THEN
- INFO = N + 9
- RETURN
- END IF
- END IF
-*
- 10 CONTINUE
- WORK( 1 ) = LWKOPT
-*
- RETURN
-*
-* End of DGEGS
-*
- END