1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
// Scicos
//
// Copyright (C) INRIA - METALAU Project <scicos@inria.fr>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// See the file ../license.txt
//
function [x,y,typ]=NPN(job,arg1,arg2)
// the automatically generated interface block for Modelica NPN.mo model
// - avec un dialogue de saisie de parametre
x=[];
y=[];
typ=[];
select job
case "set" then
x=arg1;
graphics=arg1.graphics;
exprs=graphics.exprs
model=arg1.model;
x=arg1
exprs=x.graphics.exprs
while %t do
[ok,Bf,Br,Is,Vak,Tauf,Taur,Ccs,Cje,Cjc,Phie,Me,Phic,Mc,Gbc,Gbe,Vt,EMinMax,exprs]=scicos_getvalue(["Set NPN block parameters:";""],["Bf : Forward beta";"Br : Reverse beta";"Is : Transport saturation current";"Vak : Early voltage (inverse), 1/Volt";"Tauf: Ideal forward transit time";"Taur: Ideal reverse transit time";"Ccs : Collector-substrat(ground) cap.";"Cje : Base-emitter zero bias depletion cap.";"Cjc : Base-coll. zero bias depletion cap.";"Phie: Base-emitter diffusion voltage";"Me : Base-emitter gradation exponent";"Phic: Base-collector diffusion voltage";"Mc : Base-collector gradation exponent";"Gbc : Base-collector conductance";"Gbe : Base-emitter conductance";"Vt : Voltage equivalent of temperature";"EMinmax: if x > EMinMax, the exp(x) is linearized"],list("vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1),exprs)
if ~ok then
break,
end
x.model.equations.parameters(2)=list(Bf,Br,Is,Vak,Tauf,Taur,Ccs,Cje,Cjc,Phie,Me,Phic,Mc,Gbc,Gbe,Vt,EMinMax)
x.graphics.exprs=exprs
break
end
case "define" then
ModelName="NPN"
PrametersValue=[50;0.1;0;0.02;1.200D-10;5.000D-09;1.000D-12;4.000D-13;5.000D-13;0.8;0.4;0.8;0.333;1.000D-15;1.000D-15;0.02585;40]
ParametersName=["Bf";"Br";"Is";"Vak";"Tauf";"Taur";"Ccs";"Cje";"Cjc";"Phie";"Me";"Phic";"Mc";"Gbc";"Gbe";"Vt";"EMinMax"]
model=scicos_model()
Typein=[];
Typeout=[];
MI=[];
MO=[]
P=[100,90,-2,0; 0,50,2,0; 100,10,-2,0]
PortName=["C";"B";"E"]
for i=1:size(P,"r")
if P(i,3)==1 then
Typein= [Typein; "E"];
MI=[MI;PortName(i)];
end
if P(i,3)==2 then
Typein= [Typein; "I"];
MI=[MI;PortName(i)];
end
if P(i,3)==-1 then
Typeout=[Typeout;"E"];
MO=[MO;PortName(i)];
end
if P(i,3)==-2 then
Typeout=[Typeout;"I"];
MO=[MO;PortName(i)];
end
end
model=scicos_model()
mo=modelica()
model.sim=ModelName;
mo.inputs=MI;
mo.outputs=MO;
model.rpar=PrametersValue;
mo.parameters=list(ParametersName,PrametersValue,zeros(ParametersName));
exprs=["50";"0.1";"1.e-16";"0.02";"0.12e-9";"5e-9";"1e-12";"0.4e-12";"0.5e-12";"0.8";"0.4";"0.8";"0.333";"1e-15";"1e-15";"0.02585";"40"]
gr_i=[]
model.blocktype="c"
model.dep_ut=[%f %t]
mo.model=ModelName
model.equations=mo
model.in=ones(size(MI,"*"),1)
model.out=ones(size(MO,"*"),1)
x=standard_define([2,2],model,exprs,list(gr_i,0))
x.graphics.in_implicit=Typein;
x.graphics.out_implicit=Typeout;
end
endfunction
|