1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
/* autogenerated from "macros/NonLinear/QUANT_f.sci" */
function QUANT_f() {
QUANT_f.prototype.define = function QUANT_f() {
this.pas = 0.1;
this.meth = 1;
this.model = scicos_model();
this.model.sim = new ScilabString("qzrnd");
this.model.in1 = new ScilabDouble(-1);
this.model.out = new ScilabDouble(-1);
this.model.rpar = new ScilabDouble(this.pas);
this.model.ipar = new ScilabDouble(this.meth);
this.model.blocktype = new ScilabString("c");
this.model.dep_ut = [true,false];
exprs = [[string(this.pas)],[string(this.meth)]];
gr_i = [];
this.x = standard_define([2,2],this.model,exprs,gr_i);
return new BasicBlock(this.x);
}
QUANT_f.prototype.details = function QUANT_f() {
return this.x;
}
QUANT_f.prototype.get = function QUANT_f() {
var options = {
pas:["Step",this.pas],
meth:["Quantization Type (1-4)",this.meth],
}
return options;
}
QUANT_f.prototype.set = function QUANT_f() {
this.pas = parseFloat(arguments[0]["pas"])
this.meth = parseFloat(arguments[0]["meth"])
this.x = arg1;
graphics = arg1.graphics;
exprs = graphics.exprs;
this.model = arg1.model;
while (true) {
[ok,this.pas,this.meth,exprs] = scicos_getvalue("Set parameters",["Step","Quantization Type (1-4)"],list("vec",1,"vec",1),exprs);
if (!ok) {
break;
}
if (this.meth<1||this.meth>4) {
message("Quantization Type must be from 1 to 4");
} else {
rpar = this.pas;
this.model.rpar = new ScilabDouble(rpar);
this.model.ipar = new ScilabDouble(this.meth);
switch (this.meth) {
case 1:
this.model.sim = new ScilabString("qzrnd");
case 2:
this.model.sim = new ScilabString("qztrn");
case 3:
this.model.sim = new ScilabString("qzflr");
case 4:
this.model.sim = new ScilabString("qzcel");
}
graphics.exprs = exprs;
this.x.graphics = graphics;
this.x.model = this.model;
break;
}
}
return new BasicBlock(this.x);
}
}
|