summaryrefslogtreecommitdiff
path: root/js/Linear/INTEGRAL_m.js
blob: b22c1b54a4c187f8ccef655d293b646ae08b2354 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/* autogenerated from "macros/Linear/INTEGRAL_m.sci" */
function INTEGRAL_m() {
    INTEGRAL_m.prototype.define = function INTEGRAL_m() {
maxp=1;
minp=-1;
rpar=[];
model=scicos_model();
model.state=0;
model.sim=list("integral_func",4);
model.in1=1;
model.out=1;
model.in2=1;
model.out2=1;
model.rpar=rpar;
model.blocktype="c";
model.dep_ut=[false,true];
exprs=string([[0],[0],[0],[maxp],[minp]]);
gr_i=[];
x=standard_define([2,2],model,exprs,gr_i);
    }
    INTEGRAL_m.prototype.details = function INTEGRAL_m() {
    }
    INTEGRAL_m.prototype.get = function INTEGRAL_m() {
    }
    INTEGRAL_m.prototype.set = function INTEGRAL_m() {
x=arg1;
graphics=arg1.graphics;
exprs=graphics.exprs;
model=arg1.model;
while (true) {
[ok,x0,reinit,satur,maxp,lowp,exprs]=scicos_getvalue("Set Integral block parameters",[["Initial Condition"],["With re-intialization (1:yes, 0:no)"],["With saturation (1:yes, 0:no)"],["Upper limit"],["Lower limit"]],list("mat",[-1,-1],"vec",1,"vec",1,"mat",[-1,-1],"mat",[-1,-1]),exprs);
if (!ok) {
break;
}
if (isreal[x0-1]) {
Datatype=1;
} else {
Datatype=2;
}
if (reinit!=0) {
reinit=1;
}
if (satur!=0) {
satur=1;
if (Datatype==1) {
if (size(maxp,"*")==1) {
maxp=maxp*ones(x0);
}
if (size(lowp,"*")==1) {
lowp=lowp*ones(x0);
}
if ((size(x0)!=size(maxp)||size(x0)!=size(lowp))) {
message("x0 and Upper limit and Lower limit must have same size");
ok=false;
} else if (or(maxp<=lowp)) {
message("Upper limits must be > Lower limits");
ok=false;
} else if (or(x0>maxp)||or(x0<lowp)) {
message("Initial condition x0 should be inside the limits");
ok=false;
} else {
rpar=[[real(maxp.slice())],[real(lowp.slice())]];
model.nzcross=size(x0,"*");
model.nmode=size(x0,"*");
}
} else if ((Datatype==2)) {
if (size(maxp,"*")==1) {
maxp=math.complex(maxp*ones(x0),(maxp*ones(x0)));
}
if (size(lowp,"*")==1) {
lowp=math.complex(lowp*ones(x0),(lowp*ones(x0)));
}
if ((size(x0)!=size(maxp)||size(x0)!=size(lowp))) {
message("x0 and Upper limit and Lower limit must have same size");
ok=false;
} else if (or(real(maxp)<=real(lowp))||or(imag(maxp)<=imag(lowp))) {
message("Upper limits must be > Lower limits");
ok=false;
} else if (or(real(x0)>real(maxp))||or(real(x0)<real(lowp))||or(imag(x0)>imag(maxp))||or(imag(x0)<imag(lowp))) {
message("Initial condition x0 should be inside the limits");
ok=false;
} else {
rpar=[[real(maxp.slice())],[real(lowp.slice())],[imag(maxp.slice())],[imag(lowp.slice())]];
model.nzcross=2*size(x0,"*");
model.nmode=2*size(x0,"*");
}
}
} else {
rpar=[];
model.nzcross=0;
model.nmode=0;
}
if (ok) {
model.rpar=rpar;
if ((Datatype==1)) {
model.state=real(x0.slice());
model.sim=list("integral_func",4);
it=[[1],[ones(reinit,1)]];
ot=1;
} else if ((Datatype==2)) {
model.state=[[real(x0.slice())],[imag(x0.slice())]];
model.sim=list("integralz_func",4);
it=[[2],[2*ones(reinit,1)]];
ot=2;
} else {
message("Datatype is not supported");
ok=false;
}
if (ok) {
in1=[size(x0,1)*[[1],[ones(reinit,1)]],size(x0,2)*[[1],[ones(reinit,1)]]];
out=size(x0);
[model,graphics,ok]=set_io(model,graphics,list(in1,it),list(out,ot),ones(reinit,1),[]);
}
}
if (ok) {
graphics.exprs=exprs;
x.graphics=graphics;
x.model=model;
break;
}
}
    }
}