1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
/* autogenerated from "macros/Linear/INTEGRAL_m.sci" */
function INTEGRAL_m() {
INTEGRAL_m.prototype.define = function INTEGRAL_m() {
this.maxp = 1;
minp = -1;
rpar = [];
model = scicos_model();
model.state = 0;
model.sim = list("integral_func",4);
model.in1 = 1;
model.out = 1;
model.in2 = 1;
model.out2 = 1;
model.rpar = rpar;
model.blocktype = "c";
model.dep_ut = [false,true];
exprs = string([[0],[0],[0],[this.maxp],[minp]]);
gr_i = [];
this.x = standard_define([2,2],model,exprs,gr_i);
return new BasicBlock(this.x);
}
INTEGRAL_m.prototype.details = function INTEGRAL_m() {
return this.x;
}
INTEGRAL_m.prototype.get = function INTEGRAL_m() {
}
INTEGRAL_m.prototype.set = function INTEGRAL_m() {
this.x0 = parseFloat((arguments[0]["x0"]))
this.reinit = parseFloat((arguments[0]["reinit"]))
this.satur = parseFloat((arguments[0]["satur"]))
this.maxp = parseFloat((arguments[0]["maxp"]))
this.lowp = parseFloat((arguments[0]["lowp"]))
this.x = arg1;
graphics = arg1.graphics;
exprs = graphics.exprs;
model = arg1.model;
while (true) {
[ok,this.x0,this.reinit,this.satur,this.maxp,this.lowp,exprs] = scicos_getvalue("Set Integral block parameters",["Initial Condition","With re-intialization (1:yes, 0:no)","With saturation (1:yes, 0:no)","Upper limit","Lower limit"],list("mat",[-1,-1],"vec",1,"vec",1,"mat",[-1,-1],"mat",[-1,-1]),exprs);
if (!ok) {
break;
}
if (isreal(this.x0)) {
Datatype = 1;
} else {
Datatype = 2;
}
if (this.reinit!=0) {
this.reinit = 1;
}
if (this.satur!=0) {
this.satur = 1;
if (Datatype==1) {
if (size(this.maxp,"*")==1) {
this.maxp = this.maxp*ones(this.x0);
}
if (size(this.lowp,"*")==1) {
this.lowp = this.lowp*ones(this.x0);
}
if ((size(this.x0)!=size(this.maxp)||size(this.x0)!=size(this.lowp))) {
message("x0 and Upper limit and Lower limit must have same size");
ok = false;
} else if (or(this.maxp<=this.lowp)) {
message("Upper limits must be > Lower limits");
ok = false;
} else if (or(this.x0>this.maxp)||or(this.x0<this.lowp)) {
message("Initial condition x0 should be inside the limits");
ok = false;
} else {
rpar = [[real(this.maxp.slice())],[real(this.lowp.slice())]];
model.nzcross = size(this.x0,"*");
model.nmode = size(this.x0,"*");
}
} else if ((Datatype==2)) {
if (size(this.maxp,"*")==1) {
this.maxp = math.complex(this.maxp*ones(this.x0),(this.maxp*ones(this.x0)));
}
if (size(this.lowp,"*")==1) {
this.lowp = math.complex(this.lowp*ones(this.x0),(this.lowp*ones(this.x0)));
}
if ((size(this.x0)!=size(this.maxp)||size(this.x0)!=size(this.lowp))) {
message("x0 and Upper limit and Lower limit must have same size");
ok = false;
} else if (or(real(this.maxp)<=real(this.lowp))||or(imag(this.maxp)<=imag(this.lowp))) {
message("Upper limits must be > Lower limits");
ok = false;
} else if (or(real(this.x0)>real(this.maxp))||or(real(this.x0)<real(this.lowp))||or(imag(this.x0)>imag(this.maxp))||or(imag(this.x0)<imag(this.lowp))) {
message("Initial condition x0 should be inside the limits");
ok = false;
} else {
rpar = [[real(this.maxp.slice())],[real(this.lowp.slice())],[imag(this.maxp.slice())],[imag(this.lowp.slice())]];
model.nzcross = 2*size(this.x0,"*");
model.nmode = 2*size(this.x0,"*");
}
}
} else {
rpar = [];
model.nzcross = 0;
model.nmode = 0;
}
if (ok) {
model.rpar = rpar;
if ((Datatype==1)) {
model.state = real(this.x0.slice());
model.sim = list("integral_func",4);
it = [[1],[ones(this.reinit,1)]];
ot = 1;
} else if ((Datatype==2)) {
model.state = [[real(this.x0.slice())],[imag(this.x0.slice())]];
model.sim = list("integralz_func",4);
it = [[2],[2*ones(this.reinit,1)]];
ot = 2;
} else {
message("Datatype is not supported");
ok = false;
}
if (ok) {
in1 = [size(this.x0,1)*[[1],[ones(this.reinit,1)]],size(this.x0,2)*[[1],[ones(this.reinit,1)]]];
out = size(this.x0);
[model,graphics,ok] = set_io(model,graphics,list(in1,it),list(out,ot),ones(this.reinit,1),[]);
}
}
if (ok) {
graphics.exprs = exprs;
this.x.graphics = graphics;
this.x.model = model;
break;
}
}
return new BasicBlock(this.x);
}
}
|