summaryrefslogtreecommitdiff
path: root/js/Linear/INTEGRAL_m.js
blob: a0fbcd6d3ccb79b3d3131ad532ed2b536424e118 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/* autogenerated from "macros/Linear/INTEGRAL_m.sci" */
function INTEGRAL_m() {
    INTEGRAL_m.prototype.define = function INTEGRAL_m() {
        this.maxp = 1;
        minp = -1;
        rpar = [];
        this.model = scicos_model();
        this.model.state = new ScilabDouble([0]);
        this.model.sim = list(new ScilabString(["integral_func"]), new ScilabDouble([4]));
        this.model.in1 = new ScilabDouble([1]);
        this.model.out = new ScilabDouble([1]);
        this.model.in2 = new ScilabDouble([1]);
        this.model.out2 = new ScilabDouble([1]);
        this.model.rpar = rpar;
        this.model.blocktype = new ScilabString(["c"]);
        this.model.dep_ut = [false,true];
        exprs = string([[0],[0],[0],[this.maxp],[minp]]);
        gr_i = [];
        this.x = standard_define([2,2],this.model,exprs,gr_i);
        return new BasicBlock(this.x);
    }
    INTEGRAL_m.prototype.details = function INTEGRAL_m() {
        return this.x;
    }
    INTEGRAL_m.prototype.get = function INTEGRAL_m() {
        var options = {
            x0:["Initial Condition",this.x0],
            reinit:["With re-intialization (1:yes, 0:no)",this.reinit],
            satur:["With saturation (1:yes, 0:no)",this.satur],
            maxp:["Upper limit",this.maxp],
            lowp:["Lower limit",this.lowp],
        }
        return options;
    }
    INTEGRAL_m.prototype.set = function INTEGRAL_m() {
        this.x0 = arguments[0]["x0"]
        this.reinit = parseFloat(arguments[0]["reinit"])
        this.satur = parseFloat(arguments[0]["satur"])
        this.maxp = parseFloat(arguments[0]["maxp"])
        this.lowp = parseFloat(arguments[0]["lowp"])
        this.x = arg1;
        graphics = arg1.graphics;
        exprs = graphics.exprs;
        this.model = arg1.model;
        while (true) {
            [ok,this.x0,this.reinit,this.satur,this.maxp,this.lowp,exprs] = scicos_getvalue("Set Integral block parameters",["Initial Condition","With re-intialization (1:yes, 0:no)","With saturation (1:yes, 0:no)","Upper limit","Lower limit"],list("mat",[-1,-1],"vec",1,"vec",1,"mat",[-1,-1],"mat",[-1,-1]),exprs);
            if (!ok) {
                break;
            }
            if (isreal(this.x0)) {
                Datatype = 1;
            } else {
                Datatype = 2;
            }
            if (this.reinit!=0) {
                this.reinit = 1;
            }
            if (this.satur!=0) {
                this.satur = 1;
                if (Datatype==1) {
                    if (size(this.maxp,"*")==1) {
                        this.maxp = this.maxp*ones(this.x0);
                    }
                    if (size(this.lowp,"*")==1) {
                        this.lowp = this.lowp*ones(this.x0);
                    }
                    if ((size(this.x0)!=size(this.maxp)||size(this.x0)!=size(this.lowp))) {
                        message("x0 and Upper limit and Lower limit must have same size");
                        ok = false;
                    } else if (or(this.maxp<=this.lowp)) {
                        message("Upper limits must be > Lower limits");
                        ok = false;
                    } else if (or(this.x0>this.maxp)||or(this.x0<this.lowp)) {
                        message("Initial condition x0 should be inside the limits");
                        ok = false;
                    } else {
                        rpar = [[real(this.maxp.slice())],[real(this.lowp.slice())]];
                        this.model.nzcross = new ScilabDouble([size(this.x0,"*")]);
                        this.model.nmode = new ScilabDouble([size(this.x0,"*")]);
                    }
                } else if ((Datatype==2)) {
                    if (size(this.maxp,"*")==1) {
                        this.maxp = math.complex(this.maxp*ones(this.x0),(this.maxp*ones(this.x0)));
                    }
                    if (size(this.lowp,"*")==1) {
                        this.lowp = math.complex(this.lowp*ones(this.x0),(this.lowp*ones(this.x0)));
                    }
                    if ((size(this.x0)!=size(this.maxp)||size(this.x0)!=size(this.lowp))) {
                        message("x0 and Upper limit and Lower limit must have same size");
                        ok = false;
                    } else if (or(real(this.maxp)<=real(this.lowp))||or(imag(this.maxp)<=imag(this.lowp))) {
                        message("Upper limits must be > Lower limits");
                        ok = false;
                    } else if (or(real(this.x0)>real(this.maxp))||or(real(this.x0)<real(this.lowp))||or(imag(this.x0)>imag(this.maxp))||or(imag(this.x0)<imag(this.lowp))) {
                        message("Initial condition x0 should be inside the limits");
                        ok = false;
                    } else {
                        rpar = [[real(this.maxp.slice())],[real(this.lowp.slice())],[imag(this.maxp.slice())],[imag(this.lowp.slice())]];
                        this.model.nzcross = new ScilabDouble([2*size(this.x0,"*")]);
                        this.model.nmode = new ScilabDouble([2*size(this.x0,"*")]);
                    }
                }
            } else {
                rpar = [];
                this.model.nzcross = new ScilabDouble([0]);
                this.model.nmode = new ScilabDouble([0]);
            }
            if (ok) {
                this.model.rpar = rpar;
                if ((Datatype==1)) {
                    this.model.state = new ScilabDouble([real(this.x0.slice())]);
                    this.model.sim = list(new ScilabString(["integral_func"]), new ScilabDouble([4]));
                    it = [[1],[ones(this.reinit,1)]];
                    ot = 1;
                } else if ((Datatype==2)) {
                    this.model.state = [[real(this.x0.slice())],[imag(this.x0.slice())]];
                    this.model.sim = list(new ScilabString(["integralz_func"]), new ScilabDouble([4]));
                    it = [[2],[2*ones(this.reinit,1)]];
                    ot = 2;
                } else {
                    message("Datatype is not supported");
                    ok = false;
                }
                if (ok) {
                    in1 = [size(this.x0,1)*[[1],[ones(this.reinit,1)]],size(this.x0,2)*[[1],[ones(this.reinit,1)]]];
                    out = size(this.x0);
                    [model,graphics,ok] = set_io(this.model,graphics,list(in1,it),list(out,ot),ones(this.reinit,1),[]);
                }
            }
            if (ok) {
                graphics.exprs = exprs;
                this.x.graphics = graphics;
                this.x.model = this.model;
                break;
            }
        }
        return new BasicBlock(this.x);
    }
}