1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
/* autogenerated from "macros/Electrical/PNP.sci" */
function PNP() {
PNP.prototype.define = function PNP() {
ModelName = "PNP";
PrametersValue = [[50],[0.1],[0],[0.02],[1.200e-10],[5.000e-09],[1.000e-12],[4.000e-13],[5.000e-13],[0.8],[0.4],[0.8],[0.333],[1.000e-15],[1.000e-15],[0.02585],[40]];
ParametersName = [["Bf"],["Br"],["Is"],["Vak"],["Tauf"],["Taur"],["Ccs"],["Cje"],["Cjc"],["Phie"],["Me"],["Phic"],["Mc"],["Gbc"],["Gbe"],["Vt"],["EMinMax"]];
this.model = scicos_model();
Typein = [];
Typeout = [];
MI = [];
MO = [];
P = [[100,90,-2,0],[0,50,2,0],[100,10,-2,0]];
PortName = [["C"],["B"],["E"]];
for (i=1;i<=size(P,"r");i+=1) {
if (P[i-1][3-1]==1) {
Typein = [[Typein],["E"]];
MI = [[MI],[PortName[i-1]]];
}
if (P[i-1][3-1]==2) {
Typein = [[Typein],["I"]];
MI = [[MI],[PortName[i-1]]];
}
if (P[i-1][3-1]==-1) {
Typeout = [[Typeout],["E"]];
MO = [[MO],[PortName[i-1]]];
}
if (P[i-1][3-1]==-2) {
Typeout = [[Typeout],["I"]];
MO = [[MO],[PortName[i-1]]];
}
}
this.model = scicos_model();
mo = modelica();
this.model.sim = new ScilabString(ModelName);
mo.inputs = MI;
mo.outputs = MO;
this.model.rpar = PrametersValue;
mo.parameters = list(ParametersName,PrametersValue,zeros(ParametersName));
exprs = [["50"],["0.1"],["1.e-16"],["0.02"],["0.12e-9"],["5e-9"],["1e-12"],["0.4e-12"],["0.5e-12"],["0.8"],["0.4"],["0.8"],["0.333"],["1e-15"],["1e-15"],["0.02585"],["40"]];
gr_i = [];
this.model.blocktype = new ScilabString("c");
this.model.dep_ut = [false,true];
mo.model = ModelName;
this.model.equations = new ScilabDouble(mo);
this.model.in1 = new ScilabDouble(ones(size(MI,"*"),1));
this.model.out = new ScilabDouble(ones(size(MO,"*"),1));
this.x = standard_define([2,2],this.model,exprs,list(gr_i,0));
this.x.graphics.in_implicit = Typein;
this.x.graphics.out_implicit = Typeout;
return new BasicBlock(this.x);
}
PNP.prototype.details = function PNP() {
return this.x;
}
PNP.prototype.get = function PNP() {
var options = {
Bf:["Bf : Forward beta",this.Bf],
Br:["Br : Reverse beta",this.Br],
Is:["Is : Transport saturation current",this.Is],
Vak:["Vak : Early voltage (inverse), 1/Volt",this.Vak],
Tauf:["Tauf: Ideal forward transit time",this.Tauf],
Taur:["Taur: Ideal reverse transit time",this.Taur],
Ccs:["Ccs : Collector-substrat(ground) cap.",this.Ccs],
Cje:["Cje : Base-emitter zero bias depletion cap.",this.Cje],
Cjc:["Cjc : Base-coll. zero bias depletion cap.",this.Cjc],
Phie:["Phie: Base-emitter diffusion voltage",this.Phie],
Me:["Me : Base-emitter gradation exponent",this.Me],
Phic:["Phic: Base-collector diffusion voltage",this.Phic],
Mc:["Mc : Base-collector gradation exponent",this.Mc],
Gbc:["Gbc : Base-collector conductance",this.Gbc],
Gbe:["Gbe : Base-emitter conductance",this.Gbe],
Vt:["Vt : Voltage equivalent of temperature",this.Vt],
EMinMax:["EMinMax: if x > EMinMax, the exp(x) function is linearized",this.EMinMax],
}
return options;
}
PNP.prototype.set = function PNP() {
this.Bf = arguments[0]["Bf"]
this.Br = arguments[0]["Br"]
this.Is = arguments[0]["Is"]
this.Vak = arguments[0]["Vak"]
this.Tauf = arguments[0]["Tauf"]
this.Taur = arguments[0]["Taur"]
this.Ccs = arguments[0]["Ccs"]
this.Cje = arguments[0]["Cje"]
this.Cjc = arguments[0]["Cjc"]
this.Phie = arguments[0]["Phie"]
this.Me = arguments[0]["Me"]
this.Phic = arguments[0]["Phic"]
this.Mc = arguments[0]["Mc"]
this.Gbc = arguments[0]["Gbc"]
this.Gbe = arguments[0]["Gbe"]
this.Vt = arguments[0]["Vt"]
this.EMinMax = arguments[0]["EMinMax"]
this.x = arg1;
graphics = arg1.graphics;
exprs = graphics.exprs;
this.model = arg1.model;
this.x = arg1;
exprs = this.x.graphics.exprs;
while (true) {
[ok,this.Bf,this.Br,this.Is,this.Vak,this.Tauf,this.Taur,this.Ccs,this.Cje,this.Cjc,this.Phie,this.Me,this.Phic,this.Mc,this.Gbc,this.Gbe,this.Vt,this.EMinMax,exprs] = scicos_getvalue([["Set PNP block parameters:"],[""]],["Bf : Forward beta","Br : Reverse beta","Is : Transport saturation current","Vak : Early voltage (inverse), 1/Volt","Tauf: Ideal forward transit time","Taur: Ideal reverse transit time","Ccs : Collector-substrat(ground) cap.","Cje : Base-emitter zero bias depletion cap.","Cjc : Base-coll. zero bias depletion cap.","Phie: Base-emitter diffusion voltage","Me : Base-emitter gradation exponent","Phic: Base-collector diffusion voltage","Mc : Base-collector gradation exponent","Gbc : Base-collector conductance","Gbe : Base-emitter conductance","Vt : Voltage equivalent of temperature","EMinMax: if x > EMinMax, the exp(x) function is linearized"],list("vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1),exprs);
if (!ok) {
break;
}
this.x.model.equations.parameters[2-1] = list(this.Bf,this.Br,this.Is,this.Vak,this.Tauf,this.Taur,this.Ccs,this.Cje,this.Cjc,this.Phie,this.Me,this.Phic,this.Mc,this.Gbc,this.Gbe,this.Vt,this.EMinMax);
this.x.graphics.exprs = exprs;
break;
}
return new BasicBlock(this.x);
}
}
|