summaryrefslogtreecommitdiff
path: root/lib/task_main.cpp
blob: cb3e0eefb12fcdddeb8c324c5958ddfee26e42ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Copyright (C) by Josh Blum. See LICENSE.txt for licensing information.

#include <gras_impl/block_actor.hpp>
#include "tag_handlers.hpp"

using namespace gras;

void BlockActor::task_main(void)
{
    TimerAccumulate ta_prep(data->stats.total_time_prep);

    //------------------------------------------------------------------
    //-- Decide if its possible to continue any processing:
    //-- Handle task may get called for incoming buffers,
    //-- however, not all ports may have available buffers.
    //------------------------------------------------------------------
    if GRAS_UNLIKELY(not this->is_work_allowed()) return;

    const size_t num_inputs = worker->get_num_inputs();
    const size_t num_outputs = worker->get_num_outputs();

    //------------------------------------------------------------------
    //-- initialize input buffers before work
    //------------------------------------------------------------------
    size_t output_inline_index = 0;
    data->input_items.min() = ~0;
    data->input_items.max() = 0;
    for (size_t i = 0; i < num_inputs; i++)
    {
        this->sort_tags(i);
        data->num_input_msgs_read[i] = 0;

        ASSERT(data->input_queues.ready(i));
        const SBuffer &buff = data->input_queues.front(i);
        const void *mem = buff.get();
        size_t items = buff.length/data->input_configs[i].item_size;

        data->input_items.vec()[i] = mem;
        data->input_items[i].get() = mem;
        data->input_items[i].size() = items;
        data->input_items.min() = std::min(data->input_items.min(), items);
        data->input_items.max() = std::max(data->input_items.max(), items);

        //inline dealings, how and when input buffers can be inlined into output buffers
        //*
        if GRAS_UNLIKELY(
            buff.unique() and
            data->input_configs[i].inline_buffer and
            output_inline_index < num_outputs and
            buff.get_affinity() == data->buffer_affinity
        ){
            data->output_queues.set_inline(output_inline_index++, buff);
        }
        //*/
    }

    //------------------------------------------------------------------
    //-- initialize output buffers before work
    //------------------------------------------------------------------
    data->output_items.min() = ~0;
    data->output_items.max() = 0;
    for (size_t i = 0; i < num_outputs; i++)
    {
        ASSERT(data->output_queues.ready(i));
        SBuffer &buff = data->output_queues.front(i);
        ASSERT(buff.length == 0); //assumes it was flushed last call
        void *mem = buff.get();
        const size_t bytes = buff.get_actual_length() - buff.offset;
        size_t items = bytes/data->output_configs[i].item_size;

        data->output_items.vec()[i] = mem;
        data->output_items[i].get() = mem;
        data->output_items[i].size() = items;
        data->output_items.min() = std::min(data->output_items.min(), items);
        data->output_items.max() = std::max(data->output_items.max(), items);
    }

    //------------------------------------------------------------------
    //-- the work
    //------------------------------------------------------------------
    ta_prep.done();
    data->stats.work_count++;
    if GRAS_UNLIKELY(data->interruptible_thread)
    {
        TimerAccumulate ta_work(data->stats.total_time_work);
        data->interruptible_thread->call();
    }
    else
    {
        TimerAccumulate ta_work(data->stats.total_time_work);
        this->task_work();
    }
    data->stats.time_last_work = time_now();
    TimerAccumulate ta_post(data->stats.total_time_post);

    //------------------------------------------------------------------
    //-- Post-work output tasks
    //------------------------------------------------------------------
    for (size_t i = 0; i < num_outputs; i++)
    {
        //buffer may be popped by one of the special buffer api hooks
        if GRAS_UNLIKELY(data->output_queues.empty(i)) continue;

        //grab a copy of the front buffer then consume from the queue
        InputBufferMessage buff_msg;
        buff_msg.buffer = data->output_queues.front(i);
        data->output_queues.consume(i);

        //Post a buffer message downstream only if the produce flag was marked.
        //So this explicitly after consuming the output queues so pop is called.
        //This is because pop may have special hooks in it to prepare the buffer.
        if GRAS_LIKELY(data->produce_outputs[i]) worker->post_downstream(i, buff_msg);
        data->produce_outputs[i] = false;
    }

    //------------------------------------------------------------------
    //-- Post-work input tasks
    //------------------------------------------------------------------
    for (size_t i = 0; i < num_inputs; i++)
    {
        this->trim_msgs(i);

        //update the inputs available bit field
        this->update_input_avail(i);

        //missing at least one upstream provider?
        //since nothing else is coming in, its safe to mark done
        if GRAS_UNLIKELY(this->is_input_done(i)) this->mark_done();
    }

    //still have IO ready? kick off another task
    this->task_kicker();
}