1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
// Copyright (C) by Josh Blum. See LICENSE.txt for licensing information.
#include <gras_impl/block_actor.hpp>
#include <algorithm>
using namespace gras;
/***********************************************************************
* main task helper functions used in this file
**********************************************************************/
static GRAS_FORCE_INLINE void sort_tags(boost::shared_ptr<BlockData> &data, const size_t i)
{
if GRAS_LIKELY(not data->input_tags_changed[i]) return;
std::vector<Tag> &tags_i = data->input_tags[i];
std::sort(tags_i.begin(), tags_i.end());
data->input_tags_changed[i] = false;
}
static GRAS_FORCE_INLINE void trim_tags(boost::shared_ptr<BlockData> &data, const size_t i)
{
//------------------------------------------------------------------
//-- trim the input tags that are past the consumption zone
//-- and post trimmed tags to the downstream based on policy
//------------------------------------------------------------------
std::vector<Tag> &tags_i = data->input_tags[i];
const item_index_t items_consumed_i = data->stats.items_consumed[i];
size_t last = 0;
while (last < tags_i.size() and tags_i[last].offset < items_consumed_i)
{
last++;
}
if GRAS_LIKELY(last == 0) return;
//call the overloaded propagate_tags to do the dirty work
data->block->propagate_tags(i, TagIter(tags_i.begin(), tags_i.begin()+last));
//now its safe to perform the erasure
tags_i.erase(tags_i.begin(), tags_i.begin()+last);
data->stats.tags_consumed[i] += last;
}
static GRAS_FORCE_INLINE void trim_msgs(boost::shared_ptr<BlockData> &data, const size_t i)
{
const size_t num_read = data->num_input_msgs_read[i];
if GRAS_UNLIKELY(num_read > 0)
{
std::vector<PMCC> &input_msgs = data->input_msgs[i];
input_msgs.erase(input_msgs.begin(), input_msgs.begin()+num_read);
}
}
static GRAS_FORCE_INLINE void trim_buffs(boost::shared_ptr<BlockData> &data, const size_t i)
{
const size_t num_read = data->num_input_items_read[i];
if GRAS_LIKELY(num_read > 0)
{
data->input_queues.consume(i, num_read);
}
}
/***********************************************************************
* main task
**********************************************************************/
void BlockActor::task_main(void)
{
TimerAccumulate ta_prep(data->stats.total_time_prep);
//------------------------------------------------------------------
//-- Decide if its possible to continue any processing:
//-- Handle task may get called for incoming buffers,
//-- however, not all ports may have available buffers.
//------------------------------------------------------------------
if GRAS_UNLIKELY(not this->is_work_allowed()) return;
const size_t num_inputs = worker->get_num_inputs();
const size_t num_outputs = worker->get_num_outputs();
//------------------------------------------------------------------
//-- initialize input buffers before work
//------------------------------------------------------------------
size_t output_inline_index = 0;
data->input_items.min() = ~0;
data->input_items.max() = 0;
for (size_t i = 0; i < num_inputs; i++)
{
sort_tags(data, i);
data->num_input_items_read[i] = 0;
data->num_input_msgs_read[i] = 0;
ASSERT(data->input_queues.ready(i));
const SBuffer &buff = data->input_queues.front(i);
const void *mem = buff.get();
size_t items = buff.length/data->input_configs[i].item_size;
data->input_items.vec()[i] = mem;
data->input_items[i].get() = mem;
data->input_items[i].size() = items;
data->input_items.min() = std::min(data->input_items.min(), items);
data->input_items.max() = std::max(data->input_items.max(), items);
//inline dealings, how and when input buffers can be inlined into output buffers
//*
if GRAS_UNLIKELY(
buff.unique() and
data->input_configs[i].inline_buffer and
output_inline_index < num_outputs and
buff.get_affinity() == data->global_config.buffer_affinity
){
data->output_queues.set_inline(output_inline_index++, buff);
}
//*/
}
//------------------------------------------------------------------
//-- initialize output buffers before work
//------------------------------------------------------------------
data->output_items.min() = ~0;
data->output_items.max() = 0;
for (size_t i = 0; i < num_outputs; i++)
{
data->num_output_items_read[i] = 0;
ASSERT(data->output_queues.ready(i));
SBuffer &buff = data->output_queues.front(i);
ASSERT(buff.length == 0); //assumes it was flushed last call
void *mem = buff.get();
const size_t bytes = buff.get_actual_length() - buff.offset;
size_t items = bytes/data->output_configs[i].item_size;
data->output_items.vec()[i] = mem;
data->output_items[i].get() = mem;
data->output_items[i].size() = items;
data->output_items.min() = std::min(data->output_items.min(), items);
data->output_items.max() = std::max(data->output_items.max(), items);
}
//------------------------------------------------------------------
//-- the work
//------------------------------------------------------------------
ta_prep.done();
data->stats.work_count++;
if GRAS_UNLIKELY(data->interruptible_thread)
{
TimerAccumulate ta_work(data->stats.total_time_work);
data->interruptible_thread->call();
}
else
{
TimerAccumulate ta_work(data->stats.total_time_work);
this->task_work();
}
data->stats.time_last_work = time_now();
TimerAccumulate ta_post(data->stats.total_time_post);
//------------------------------------------------------------------
//-- Post-work input tasks
//------------------------------------------------------------------
for (size_t i = 0; i < num_inputs; i++)
{
//call consumption routines to free up resources
trim_msgs(data, i);
trim_tags(data, i);
trim_buffs(data, i);
//update the inputs available bit field
this->update_input_avail(i);
//finally update consumed count --affects get_consumed
data->total_items_consumed[i] += data->num_input_items_read[i];
}
//------------------------------------------------------------------
//-- Post-work output tasks
//------------------------------------------------------------------
for (size_t i = 0; i < num_outputs; i++)
{
//buffer may be popped by one of the special buffer api hooks
if GRAS_UNLIKELY(data->output_queues.empty(i)) continue;
//grab a copy of the front buffer then consume from the queue
InputBufferMessage buff_msg;
buff_msg.buffer = data->output_queues.front(i);
data->output_queues.consume(i);
//Post a buffer message downstream only if the produce flag was marked.
//So this explicitly after consuming the output queues so pop is called.
//This is because pop may have special hooks in it to prepare the buffer.
if GRAS_LIKELY(data->num_output_items_read[i]) worker->post_downstream(i, buff_msg);
//finally update produced count --affects get_produced
data->total_items_produced[i] += data->num_output_items_read[i];
}
//still have IO ready? kick off another task
this->task_kicker();
}
|