1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
//
// Copyright 2012 Josh Blum
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with io_sig program. If not, see <http://www.gnu.org/licenses/>.
#ifndef INCLUDED_LIBGRAS_IMPL_INPUT_BUFFERS_HPP
#define INCLUDED_LIBGRAS_IMPL_INPUT_BUFFERS_HPP
#include <gras_impl/debug.hpp>
#include <gras_impl/buffer_queue.hpp>
#include <gnuradio/sbuffer.hpp>
#include <boost/dynamic_bitset.hpp>
#include <vector>
#include <queue>
#include <deque>
#include <cstring> //memcpy/memset
namespace gnuradio
{
struct BuffInfo
{
BuffInfo(void): mem(NULL), len(0){}
void *mem;
size_t len;
};
struct InputBufferQueues
{
~InputBufferQueues(void)
{
this->resize(0);
}
void init(
const std::vector<size_t> &input_history_items,
const std::vector<size_t> &input_multiple_items,
const std::vector<size_t> &input_item_sizes
);
/*!
* Rules for front:
*
* If we are within the mini history buffer,
* memcpy post bytes from the head of the input buffer.
* The caller must chew through the mini history buffer
* until offset bytes passes the history requirement.
*
* Otherwise, resolve pointers to the input buffer,
* moving the memory and length by num history bytes.
*/
BuffInfo front(const size_t i);
/*!
* Rules for consume:
*
* If we were operating in a mini history buffer, do nothing.
* Otherwise, check if the input buffer was entirely consumed.
* If so, pop the input buffer, copy the tail end of the buffer
* into the mini history buffer, and reset the offset condition.
*
* \return true if the input allows output flushing
*/
bool consume(const size_t i, const size_t bytes_consumed);
void resize(const size_t size);
inline void push(const size_t i, const SBuffer &buffer)
{
_queues[i].push_back(buffer);
_enqueued_bytes[i] += _queues[i].back().length;
__update(i);
}
inline void flush(const size_t i)
{
_queues[i] = std::deque<SBuffer>();
_bitset.reset(i);
}
size_t size(void) const
{
return _queues.size();
}
inline void flush_all(void)
{
const size_t old_size = this->size();
this->resize(0);
this->resize(old_size);
}
inline bool ready(const size_t i) const
{
return _bitset[i];
}
inline bool empty(const size_t i) const
{
return not _bitset[i];
}
inline bool all_ready(void) const
{
return (~_bitset).none();
}
void __prepare(const size_t i);
inline void __update(const size_t i)
{
_bitset.set(i, _enqueued_bytes[i] >= _reserve_bytes[i]);
}
boost::dynamic_bitset<> _bitset;
std::vector<size_t> _enqueued_bytes;
std::vector<std::deque<SBuffer> > _queues;
std::vector<size_t> _history_bytes;
std::vector<size_t> _reserve_bytes;
std::vector<size_t> _multiple_bytes;
std::vector<size_t> _post_bytes;
std::vector<boost::shared_ptr<BufferQueue> > _aux_queues;
};
inline void InputBufferQueues::resize(const size_t size)
{
_bitset.resize(size);
_enqueued_bytes.resize(size, 0);
_queues.resize(size);
_history_bytes.resize(size, 0);
_reserve_bytes.resize(size, 0);
_multiple_bytes.resize(size, 0);
_post_bytes.resize(size, 0);
_aux_queues.resize(size);
}
inline void InputBufferQueues::init(
const std::vector<size_t> &input_history_items,
const std::vector<size_t> &input_multiple_items,
const std::vector<size_t> &input_item_sizes
){
if (this->size() == 0) return;
const size_t max_history_items = *std::max_element(input_history_items.begin(), input_history_items.end());
for (size_t i = 0; i < this->size(); i++)
{
ASSERT(input_multiple_items[i] > 0);
_aux_queues[i] = boost::shared_ptr<BufferQueue>(new BufferQueue());
//determine byte sizes for buffers and dealing with history
_history_bytes[i] = input_item_sizes[i]*input_history_items[i];
_reserve_bytes[i] = input_item_sizes[i]*input_multiple_items[i];
_multiple_bytes[i] = std::max(size_t(1), _reserve_bytes[i]);
_post_bytes[i] = input_item_sizes[i]*max_history_items;
_post_bytes[i] = std::max(_post_bytes[i], _reserve_bytes[i]);
//allocate mini buffers for history edge conditions
size_t num_bytes = _history_bytes[i] + _post_bytes[i];
_aux_queues[i]->allocate_one(num_bytes);
_aux_queues[i]->allocate_one(num_bytes);
//there is history, so enqueue some initial history
if (_history_bytes[i] != 0)
{
SBuffer buff = _aux_queues[i]->front();
_aux_queues[i]->pop();
const size_t hist_bytes = _history_bytes[i];
std::memset(buff.get_actual_memory(), 0, hist_bytes);
buff.offset = hist_bytes;
buff.length = 0;
_queues[i].push_front(buff);
}
}
}
inline BuffInfo InputBufferQueues::front(const size_t i)
{
//if (_queues[i].empty()) return BuffInfo();
ASSERT(not _queues[i].empty());
ASSERT(this->ready(i));
__prepare(i);
SBuffer &front = _queues[i].front();
BuffInfo info;
info.mem = front.get(-_history_bytes[i]);
info.len = front.length;
info.len /= _multiple_bytes[i];
info.len *= _multiple_bytes[i];
return info;
}
inline void InputBufferQueues::__prepare(const size_t i)
{
//assumes that we are always pushing proper history buffs on front
ASSERT(_queues[i].front().offset >= _history_bytes[i]);
while (_queues[i].front().length < _reserve_bytes[i])
{
SBuffer &front = _queues[i].front();
SBuffer dst;
size_t hist_bytes = 0;
//do we need a new buffer:
//- is the buffer unique (queue has only reference)?
//- can its remaining space meet reserve requirements?
const bool enough_space = front.get_actual_length() >= _reserve_bytes[i] + front.offset;
if (enough_space and front.unique())
{
dst = _queues[i].front();
_queues[i].pop_front();
}
else
{
dst = _aux_queues[i]->front();
_aux_queues[i]->pop();
hist_bytes = _history_bytes[i];
dst.offset = hist_bytes;
dst.length = 0;
}
SBuffer src = _queues[i].front();
_queues[i].pop_front();
const size_t dst_tail = dst.get_actual_length() - (dst.offset + dst.length);
const size_t bytes = std::min(std::min(dst_tail, src.length), _post_bytes[i]);
ASSERT(src.offset >= hist_bytes);
std::memcpy(dst.get(dst.length-hist_bytes), src.get(-hist_bytes), bytes+hist_bytes);
//update buffer additions, consumptions
dst.length += bytes;
src.offset += bytes;
src.length -= bytes;
//keep the source buffer if not fully consumed
if (src.length) _queues[i].push_front(src);
//destination buffer is the new front of the queue
_queues[i].push_front(dst);
}
}
inline bool InputBufferQueues::consume(const size_t i, const size_t bytes_consumed)
{
//if (bytes_consumed == 0) return true;
//assert that we dont consume past the bounds of the buffer
ASSERT(_queues[i].front().length >= bytes_consumed);
//this is an optimization
const bool minibuff = (_history_bytes[i] != 0) and (_queues[i].front().offset == _history_bytes[i]) and (bytes_consumed == _post_bytes[i]);
//update bounds on the current buffer
_queues[i].front().offset += bytes_consumed;
_queues[i].front().length -= bytes_consumed;
//safe to pop here when the buffer is consumed and no history
if (_queues[i].front().length == 0 and _history_bytes[i] == 0)
{
_queues[i].pop_front();
}
//update the number of bytes in this queue
ASSERT(_enqueued_bytes[i] >= bytes_consumed);
_enqueued_bytes[i] -= bytes_consumed;
__update(i);
return not minibuff; //not true on minibuff
}
} //namespace gnuradio
#endif /*INCLUDED_LIBGRAS_IMPL_INPUT_BUFFERS_HPP*/
|