summaryrefslogtreecommitdiff
path: root/lib/gras_impl/input_buffer_queues.hpp
blob: 83ed44b0e7aec5dfd0af15e930cbd19b1abca434 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// Copyright (C) by Josh Blum. See LICENSE.txt for licensing information.

#ifndef INCLUDED_LIBGRAS_IMPL_INPUT_BUFFERS_HPP
#define INCLUDED_LIBGRAS_IMPL_INPUT_BUFFERS_HPP

#include <gras_impl/debug.hpp>
#include <gras_impl/bitset.hpp>
#include <gras_impl/buffer_queue.hpp>
#include <gras/sbuffer.hpp>
#include <vector>
#include <queue>
#include <deque>
#include <cstring> //memcpy/memset
#include <boost/circular_buffer.hpp>

namespace gras
{

struct InputBufferQueues
{
    enum {MAX_QUEUE_SIZE = 128};
    enum {MAX_AUX_BUFF_BYTES=(1<<16)};

    static SBuffer make_null_buff(void)
    {
        SBufferConfig config;
        config.memory = NULL;
        config.length = 1;
        return SBuffer(config);
    }

    static SBuffer &get_null_buff(void)
    {
        static SBuffer null = make_null_buff();
        null.offset = 0;
        null.length = 0;
        return null;
    }

    ~InputBufferQueues(void)
    {
        this->resize(0);
    }

    void update_config(const size_t i, const size_t, const size_t, const size_t, const size_t);

    //! Call to get an input buffer for work
    GRAS_FORCE_INLINE const SBuffer &front(const size_t i)
    {
        ASSERT(this->ready(i));

        //special case when the null buffer is possible
        if (_queues[i].empty()) return get_null_buff();

        //there are enough enqueued bytes, but not in the front buffer
        const bool must_accumulate = _queues[i].front().length < _reserve_bytes[i];

        //should we accumulate? a guess at heuristic improvement
        const bool heavy_load = _enqueued_bytes[i] >= _maximum_bytes[i];
        const bool light_front = _queues[i].front().length <= _maximum_bytes[i]/2;
        const bool should_accumulate = heavy_load and light_front;

        if (must_accumulate or should_accumulate) this->accumulate(i);

        ASSERT(_queues[i].front().length >= _reserve_bytes[i]);

        ASSERT((_queues[i].front().length % _items_sizes[i]) == 0);

        return _queues[i].front();
    }

    //! Call when input bytes consumed by work
    void consume(const size_t i, const size_t bytes_consumed);

    void resize(const size_t size);

    void accumulate(const size_t i);

    /*!
     * Can we consider this queue's buffers to be accumulated?
     * Either the first buffer holds all of the enqueued bytes
     * or the first buffer is larger than we can accumulate.
     */
    GRAS_FORCE_INLINE bool is_accumulated(const size_t i) const
    {
        return (_queues[i].size() <= 1) or this->is_front_maximal(i);
    }

    //! Return true if the front buffer is at least max size
    GRAS_FORCE_INLINE bool is_front_maximal(const size_t i) const
    {
        ASSERT(not _queues[i].empty());
        return _queues[i].front().length >= _maximum_bytes[i];
    }

    GRAS_FORCE_INLINE void pop(const size_t i)
    {
        ASSERT(not _queues[i].empty());
        _queues[i].front().reset();
        _queues[i].pop_front();
    }

    GRAS_FORCE_INLINE void push(const size_t i, const SBuffer &buffer)
    {
        ASSERT(not _queues[i].full());
        if (buffer.length == 0) return;

        //does this buffer starts where the last one ends?
        //perform buffer stitching into back of buffer
        if (
            not _queues[i].empty() and _queues[i].back() == buffer and
            (_queues[i].back().length + _queues[i].back().offset) == buffer.offset
        ){
            _queues[i].back().length += buffer.length;
        }
        else
        {
            _queues[i].push_back(buffer);
        }

        _enqueued_bytes[i] += buffer.length;
        __update(i);
    }

    GRAS_FORCE_INLINE void flush(const size_t i)
    {
        _queues[i].clear();
        _bitset.reset(i);
    }

    GRAS_FORCE_INLINE void fail(const size_t i)
    {
        _bitset.reset(i);
    }

    size_t size(void) const
    {
        return _queues.size();
    }

    GRAS_FORCE_INLINE void flush_all(void)
    {
        const size_t old_size = this->size();
        this->resize(0);
        this->resize(old_size);
    }

    GRAS_FORCE_INLINE bool ready(const size_t i) const
    {
        return _bitset[i];
    }

    GRAS_FORCE_INLINE bool empty(const size_t i) const
    {
        return _queues[i].empty();
    }

    GRAS_FORCE_INLINE bool all_ready(void) const
    {
        return _bitset.all();
    }

    GRAS_FORCE_INLINE void __update(const size_t i)
    {
        _bitset.set(i, _enqueued_bytes[i] >= _reserve_bytes[i]);
    }

    BitSet _bitset;
    std::vector<size_t> _items_sizes;
    std::vector<size_t> _enqueued_bytes;
    std::vector<size_t> _reserve_bytes;
    std::vector<size_t> _maximum_bytes;
    std::vector<boost::circular_buffer<SBuffer> > _queues;
    std::vector<size_t> _preload_bytes;
    std::vector<boost::shared_ptr<BufferQueue> > _aux_queues;
};


GRAS_FORCE_INLINE void InputBufferQueues::resize(const size_t size)
{
    _bitset.resize(size);
    _items_sizes.resize(size, 0);
    _enqueued_bytes.resize(size, 0);
    _reserve_bytes.resize(size, 1);
    _maximum_bytes.resize(size, MAX_AUX_BUFF_BYTES);
    _queues.resize(size, boost::circular_buffer<SBuffer>(MAX_QUEUE_SIZE));
    _preload_bytes.resize(size, 0);
    _aux_queues.resize(size);

}

inline void InputBufferQueues::update_config(
    const size_t i,
    const size_t item_size,
    const size_t preload_bytes,
    const size_t reserve_bytes,
    const size_t maximum_bytes
)
{
    _items_sizes[i] = item_size;

    //first allocate the aux buffer
    if (maximum_bytes != 0) _maximum_bytes[i] = maximum_bytes;
    _maximum_bytes[i] = std::max(_maximum_bytes[i], reserve_bytes);
    if (
        not _aux_queues[i] or
        _aux_queues[i]->empty() or
        _aux_queues[i]->front().get_actual_length() != _maximum_bytes[i]
    ){
        _aux_queues[i] = boost::shared_ptr<BufferQueue>(new BufferQueue());
        _aux_queues[i]->allocate_one(_maximum_bytes[i]);
        _aux_queues[i]->allocate_one(_maximum_bytes[i]);
        _aux_queues[i]->allocate_one(_maximum_bytes[i]);
    }

    //there is preload, so enqueue some initial preload
    if (preload_bytes > _preload_bytes[i])
    {
        SBuffer buff = _aux_queues[i]->front();
        _aux_queues[i]->pop();

        const size_t delta = preload_bytes - _preload_bytes[i];
        std::memset(buff.get_actual_memory(), 0, delta);
        buff.offset = 0;
        buff.length = delta;

        this->push(i, buff);
    }
    if (preload_bytes < _preload_bytes[i])
    {
        size_t delta = _preload_bytes[i] - preload_bytes;
        delta = std::min(delta, _enqueued_bytes[i]); //FIXME
        //TODO consume extra delta on push...? so we dont need std::min
        this->consume(i, delta);
    }

    _preload_bytes[i] = preload_bytes;
    _reserve_bytes[i] = reserve_bytes;
    this->__update(i);
}

GRAS_FORCE_INLINE void InputBufferQueues::accumulate(const size_t i)
{
    if (this->is_accumulated(i)) return;

    if (_aux_queues[i]->empty())
    {
        _aux_queues[i]->allocate_one(_maximum_bytes[i]);
    }
    ASSERT(not _aux_queues[i]->empty());

    SBuffer accum_buff = _aux_queues[i]->front();
    _aux_queues[i]->pop();
    accum_buff.offset = 0;
    accum_buff.length = 0;

    size_t free_bytes = accum_buff.get_actual_length();
    free_bytes /= _items_sizes[i]; free_bytes *= _items_sizes[i];

    while (not _queues[i].empty() and free_bytes != 0)
    {
        SBuffer &front = _queues[i].front();
        const size_t bytes = std::min(front.length, free_bytes);
        std::memcpy(accum_buff.get(accum_buff.length), front.get(), bytes);
        accum_buff.length += bytes;
        free_bytes -= bytes;
        front.length -= bytes;
        front.offset += bytes;
        if (front.length == 0) this->pop(i);
    }

    _queues[i].push_front(accum_buff);

    ASSERT(this->is_accumulated(i));
}

GRAS_FORCE_INLINE void InputBufferQueues::consume(const size_t i, const size_t bytes_consumed)
{
    if (bytes_consumed == 0) return;

    ASSERT(not _queues[i].empty());
    SBuffer &front = _queues[i].front();

    //assert that we dont consume past the bounds of the buffer
    ASSERT(front.length >= bytes_consumed);

    //update bounds on the current buffer
    front.offset += bytes_consumed;
    front.length -= bytes_consumed;
    ASSERT(front.offset <= front.get_actual_length());
    ASSERT((_queues[i].front().length % _items_sizes[i]) == 0);
    if (front.length == 0) this->pop(i);

    //update the number of bytes in this queue
    ASSERT(_enqueued_bytes[i] >= bytes_consumed);
    _enqueued_bytes[i] -= bytes_consumed;

    __update(i);
}

} //namespace gras

#endif /*INCLUDED_LIBGRAS_IMPL_INPUT_BUFFERS_HPP*/