summaryrefslogtreecommitdiff
path: root/lib/block_task.cpp
blob: d871f126c7aaf45df748726cb0fedd3c41eda289 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//
// Copyright 2012 Josh Blum
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with io_sig program.  If not, see <http://www.gnu.org/licenses/>.

#include "element_impl.hpp"
#include <boost/foreach.hpp>
#include <algorithm>

using namespace gnuradio;

void ElementImpl::free_inputs(const tsbe::TaskInterface &task_iface)
{
    for (size_t i = 0; i < task_iface.get_num_inputs(); i++)
    {
        while (not this->input_queues[i].empty())
        {
            this->input_queues[i].pop();
        }
        this->inputs_ready.set(i, false);
    }
}

void ElementImpl::mark_done(const tsbe::TaskInterface &task_iface)
{
    if (not this->active) return;
    this->active = false;
    this->token_pool.clear();
    this->token.reset();
    this->free_inputs(task_iface);
    this->output_buffer_tokens.clear();
    for (size_t i = 0; i < task_iface.get_num_inputs(); i++)
    {
        task_iface.post_upstream(i, CheckTokensMessage());
    }
    for (size_t i = 0; i < task_iface.get_num_outputs(); i++)
    {
        task_iface.post_downstream(i, CheckTokensMessage());
    }
    HERE();
    VAR(name);
}

void ElementImpl::handle_task(const tsbe::TaskInterface &task_iface)
{
    //FIXME in case we get called in the inactive state, assuming done?
    if (not this->active)
    {
        this->free_inputs(task_iface);
    }

    //------------------------------------------------------------------
    //-- Decide if its possible to continue any processing:
    //-- Handle task may get called for incoming buffers,
    //-- however, not all ports may have available buffers.
    //------------------------------------------------------------------
    const bool all_inputs_ready = (~this->inputs_ready).none();
    const bool all_outputs_ready = (~this->outputs_ready).none();
    if (not (this->active and all_inputs_ready and all_outputs_ready)) return;

    const size_t num_inputs = task_iface.get_num_inputs();
    const size_t num_outputs = task_iface.get_num_outputs();
    const bool is_source = (num_inputs == 0);

    //------------------------------------------------------------------
    //-- sort the input tags before working
    //------------------------------------------------------------------
    for (size_t i = 0; i < num_inputs; i++)
    {
        if (not this->input_tags_changed[i]) continue;
        std::vector<Tag> &tags_i = this->input_tags[i];
        std::sort(tags_i.begin(), tags_i.end(), Tag::offset_compare);
        this->input_tags_changed[i] = false;
    }

    //------------------------------------------------------------------
    //-- Processing time!
    //------------------------------------------------------------------

    std::cout << "calling work on " << name << std::endl;

    //reset work trackers for production/consumption
    size_t input_tokens_count = 0;
    for (size_t i = 0; i < num_inputs; i++)
    {
        input_tokens_count += this->input_tokens[i].use_count();
        //this->consume_items[i] = 0;

        ASSERT(this->input_history_items[i] == 0);

        const tsbe::Buffer &buff = this->input_queues[i].front();
        char *mem = ((char *)buff.get_memory()) + this->input_buff_offsets[i];
        const size_t bytes = buff.get_length() - this->input_buff_offsets[i];
        const size_t items = bytes/this->input_items_sizes[i];

        this->input_items[i]._mem = mem;
        this->input_items[i]._len = items;
        this->work_input_items[i] = mem;
        this->work_ninput_items[i] = items;
    }

    size_t num_output_items = ~0; //so big that it must std::min
    size_t output_tokens_count = 0;
    for (size_t i = 0; i < num_outputs; i++)
    {
        output_tokens_count += this->output_tokens[i].use_count();
        //this->produce_items[i] = 0;

        const tsbe::Buffer &buff = this->output_queues[i].front();
        char *mem = ((char *)buff.get_memory());
        const size_t bytes = buff.get_length();
        const size_t items = bytes/this->output_items_sizes[i];

        this->output_items[i]._mem = mem;
        this->output_items[i]._len = items;
        this->work_output_items[i] = mem;
        num_output_items = std::min(num_output_items, items);
    }

    //someone upstream or downstream holds no tokens, we are done!
    if (
        (num_inputs != 0 and input_tokens_count == num_inputs) or
        (num_outputs != 0 and output_tokens_count == num_outputs)
    ){
        this->mark_done(task_iface);
        return;
    }

    //start with source, this should be EZ
    int ret = 0;
    ret = block_ptr->Work(this->input_items, this->output_items);
    VAR(ret);
    if (ret == Block::WORK_DONE)
    {
        this->mark_done(task_iface);
        return;
    }
    const size_t noutput_items = size_t(ret);

    //now to deal with consumption and production
    for (size_t i = 0; i < num_inputs; i++)
    {
        ASSERT(enable_fixed_rate or ret != Block::WORK_CALLED_PRODUCE);
        const size_t items = (enable_fixed_rate)? (myulround((noutput_items/this->relative_rate))) : this->consume_items[i];
        this->consume_items[i] = 0;

        this->items_consumed[i] += items;
        const size_t bytes = items*this->input_items_sizes[i];
        this->input_buff_offsets[i] += bytes;
        tsbe::Buffer &buff = this->input_queues[i].front();
        if (buff.get_length() >= this->input_buff_offsets[i])
        {
            this->input_queues[i].pop();
            this->inputs_ready.set(i, not this->input_queues[i].empty());
            this->input_buff_offsets[i] = 0;
        }
    }
    for (size_t i = 0; i < num_outputs; i++)
    {
        const size_t items = (ret == Block::WORK_CALLED_PRODUCE)? this->produce_items[i] : noutput_items;
        this->produce_items[i] = 0;

        this->items_produced[i] += items;
        const size_t bytes = items*this->output_items_sizes[i];
        tsbe::Buffer &buff = this->output_queues[i].front();
        buff.get_length() = bytes;
        task_iface.post_downstream(i, buff);
        this->output_queues[i].pop();
        this->outputs_ready.set(i, not this->output_queues[i].empty());
    }

    //0) figure out what we have for input data
    //1) calculate the possible num output items
    //2) take into account the item multiple
    //3) allocate some buffers
    //4) work....

    //block_ptr->forecast(100


    //TODO set deactive when work returns DONE

    //TODO source blocks should call work again until exhausted output buffers

    //------------------------------------------------------------------
    //-- trim the input tags that are past the consumption zone
    //-- and post trimmed tags to the downstream based on policy
    //------------------------------------------------------------------
    for (size_t i = 0; i < num_inputs; i++)
    {
        std::vector<Tag> &tags_i = this->input_tags[i];
        const size_t items_consumed_i = this->items_consumed[i];
        size_t last = 0;
        while (last < tags_i.size() and tags_i[last].offset < items_consumed_i)
        {
            last++;
        }

        //follow the tag propagation policy before erasure
        switch (this->tag_prop_policy)
        {
        case Block::TPP_DONT: break; //well that was ez
        case Block::TPP_ALL_TO_ALL:
            for (size_t out_i = 0; out_i < num_outputs; out_i++)
            {
                for (size_t tag_i = 0; tag_i < last; tag_i++)
                {
                    Tag t = tags_i[tag_i];
                    t.offset = myullround(t.offset * this->relative_rate);
                    task_iface.post_downstream(out_i, t);
                }
            }
            break;
        case Block::TPP_ONE_TO_ONE:
            if (i < num_outputs)
            {
                for (size_t tag_i = 0; tag_i < last; tag_i++)
                {
                    Tag t = tags_i[tag_i];
                    t.offset = myullround(t.offset * this->relative_rate);
                    task_iface.post_downstream(i, t);
                }
            }
            break;
        };

        //now its safe to perform the erasure
        if (last != 0) tags_i.erase(tags_i.begin(), tags_i.begin()+last);
    }

    //------------------------------------------------------------------
    //-- now commit all tags in the output queue to the downstream
    //------------------------------------------------------------------
    for (size_t i = 0; i < num_outputs; i++)
    {
        BOOST_FOREACH(const Tag &t, this->output_tags[i])
        {
            task_iface.post_downstream(i, t);
        }
        this->output_tags[i].clear();
    }
}