1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
//
// Copyright 2012 Josh Blum
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with io_sig program. If not, see <http://www.gnu.org/licenses/>.
#include "element_impl.hpp"
#include <gras_impl/vector_utils.hpp>
using namespace gnuradio;
void ElementImpl::handle_block_msg(
const tsbe::TaskInterface &task_iface,
const tsbe::Wax &msg
){
if (MESSAGE) std::cout << "handle_block_msg (" << msg.type().name() << ") " << name << std::endl;
//a buffer has returned from the downstream
//(all interested consumers have finished with it)
if (msg.type() == typeid(BufferReturnMessage))
{
const BufferReturnMessage &message = msg.cast<BufferReturnMessage>();
const size_t index = message.index;
if (this->block_state == BLOCK_STATE_DONE) return;
this->output_queues.push(index, message.buffer);
this->handle_task(task_iface);
return;
}
//self kick, call the handle task method
if (msg.type() == typeid(SelfKickMessage))
{
this->handle_task(task_iface);
return;
}
//clearly, this block is near death, hang on sparky
if (msg.type() == typeid(CheckTokensMessage))
{
if (this->input_queues.all_ready() and not this->forecast_fail)
{
this->handle_task(task_iface);
}
else
{
this->mark_done(task_iface);
}
return;
}
ASSERT(msg.type() == typeid(TopBlockMessage));
const size_t num_inputs = task_iface.get_num_inputs();
const size_t num_outputs = task_iface.get_num_outputs();
//allocate output tokens and send them downstream
if (msg.cast<TopBlockMessage>().what == TopBlockMessage::TOKEN_TIME)
{
for (size_t i = 0; i < num_inputs; i++)
{
this->input_tokens[i] = Token::make();
task_iface.post_upstream(i, this->input_tokens[i]);
}
for (size_t i = 0; i < num_outputs; i++)
{
this->output_tokens[i] = Token::make();
task_iface.post_downstream(i, this->output_tokens[i]);
}
this->token_pool.insert(msg.cast<TopBlockMessage>().token);
}
if (msg.cast<TopBlockMessage>().what == TopBlockMessage::ALLOCATE)
{
//causes initial processing kick-off for source blocks
this->handle_allocation(task_iface);
}
if (msg.cast<TopBlockMessage>().what == TopBlockMessage::ACTIVE)
{
if (this->block_state != BLOCK_STATE_LIVE)
{
this->block_ptr->start();
}
this->block_state = BLOCK_STATE_LIVE;
if (this->input_queues.all_ready() and this->output_queues.all_ready())
{
this->block.post_msg(SelfKickMessage());
}
}
if (msg.cast<TopBlockMessage>().what == TopBlockMessage::INERT)
{
if (this->block_state != BLOCK_STATE_DONE)
{
this->block_ptr->stop();
}
this->mark_done(task_iface);
}
}
void ElementImpl::topology_update(const tsbe::TaskInterface &task_iface)
{
//std::cout << "topology_update in " << name << std::endl;
const size_t num_inputs = task_iface.get_num_inputs();
const size_t num_outputs = task_iface.get_num_outputs();
//call check_topology on block before committing settings
this->block_ptr->check_topology(num_inputs, num_outputs);
//fill the item sizes from the IO signatures
fill_item_sizes_from_sig(this->input_items_sizes, this->input_signature, num_inputs);
fill_item_sizes_from_sig(this->output_items_sizes, this->output_signature, num_outputs);
//resize and fill port properties
resize_fill_back(this->input_history_items, num_inputs);
resize_fill_back(this->output_multiple_items, num_outputs);
//resize the bytes consumed/produced
resize_fill_grow(this->items_consumed, num_inputs, 0);
resize_fill_grow(this->items_produced, num_outputs, 0);
//resize all work buffers to match current connections
this->work_input_items.resize(num_inputs);
this->work_output_items.resize(num_outputs);
this->work_ninput_items.resize(num_inputs);
this->input_items.resize(num_inputs);
this->output_items.resize(num_outputs);
this->consume_items.resize(num_inputs, 0);
this->produce_items.resize(num_outputs, 0);
this->input_queues.resize(num_inputs);
this->output_queues.resize(num_outputs);
this->output_bytes_offset.resize(num_outputs, 0);
this->input_tokens.resize(num_inputs);
this->output_tokens.resize(num_outputs);
//resize tags vector to match sizes
this->input_tags_changed.resize(num_inputs);
this->input_tags.resize(num_inputs);
this->output_tags.resize(num_outputs);
//impose input reserve requirements based on relative rate and output multiple
std::vector<size_t> input_multiple_items(num_inputs, 1);
for (size_t i = 0; i < num_inputs; i++)
{
//TODO, this is a little cheap, we only look at output multiple [0]
const size_t multiple = (num_outputs)?this->output_multiple_items.front():1;
input_multiple_items[i] = size_t(std::ceil(multiple/this->relative_rate));
if (input_multiple_items[i] == 0) input_multiple_items[i] = 1;
}
//init the history comprehension on input queues
this->input_queues.init(this->input_history_items, input_multiple_items, this->input_items_sizes);
//TODO: think more about this:
if (num_inputs == 0 and num_outputs == 0)
{
HERE();
this->mark_done(task_iface);
}
}
|