1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
cells:
- markdown: |
# More plotting and elementary stats
## A quick exercise
metadata:
slideshow:
slide_type: slide
- code: |
# Start with this.
%pylab inline
id: 0
metadata:
slideshow:
slide_type: slide
- markdown: |
## Simple plotting
- Plot $x, -x, \sin(x), x \sin(x)$ in range $-5\pi$ to $5\pi$
- Add a legend
- Annotate the origin
- Set axes limits to the range of x
<img src="images/four_plot.png" alt="Sample plot to reproduce" width="50%"></img>
metadata:
slideshow:
slide_type: slide
- code: |
# Solution
id: 1
metadata:
slideshow:
slide_type: slide
- markdown: |
## Mean, standard deviation, percentiles, ...
metadata:
slideshow:
slide_type: slide
- code: |
x = np.array([3, 2, 1, 4, 4, 5, 15, 24, 22, 25, 18, 32, 33])
- code: |
np.mean(x)
- code: |
np.median(x)
- markdown: |
## Variance, standard deviation and degrees of freedom
$$S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$$
metadata:
slideshow:
slide_type: slide
- code: |
np.var(x, ddof=1)
- markdown: |
`ddof=1` corresponds to $n-1$ in the denominator.
- code: |
np.std(x, ddof=1)
- markdown: |
## Percentiles
metadata:
slideshow:
slide_type: slide
- code: |
np.percentile(x, 34)
id: 3
- code: |
np.percentile(x, [25, 50, 75, 34])
id: 4
- code: |
sorted(x)
id: 5
metadata:
slideshow:
slide_type: slide
- markdown: |
## More statistics from `scipy.stats`
Use the `scipy.stats` module for more stats related functions
metadata:
slideshow:
slide_type: slide
- code: |
import scipy.stats
- code: |
scipy.stats?
- code: |
scipy.stats.mode(x)
- code: |
scipy.stats.gmean(x)
- code: |
scipy.stats.hmean(x)
- markdown: |
## Load the given `data.txt` file
- Load up the data file into numpy arrays.
- Plot the two columns one vs the other with points.
- Find the mean and standard deviation of the columns
metadata:
slideshow:
slide_type: slide
- code: |
x, y = loadtxt('data/data.txt', unpack=True)
- code: |
# Find mean and standard deviation
- code: |
# Your plotting code here...
- markdown: |
## More plotting functions
We explore more plotting functions below
metadata:
slideshow:
slide_type: slide
- code: |
scatter(x, y, s=x, c=y);
id: 7
metadata:
slideshow:
slide_type: slide
- code: |
# Histogram
hist(y);
id: 8
metadata:
slideshow:
slide_type: slide
- code: |
hist(y, cumulative=True);
id: 9
- code: |
# Boxplot
boxplot(y, showmeans=True);
grid()
axis('tight');
id: 10
metadata:
slideshow:
slide_type: slide
- markdown: |
## Simple image processing
- Load the image.
- Show the image.
- Drop every alternate pixel to reduce the size of the image
- Crop the picture to only show the baby penguin.
<img src="images/penguins.png" alt="Sample plot" width="50%"></img>
metadata:
slideshow:
slide_type: slide
- code: |
imshow(img[:,:,3], cmap='gray');
colorbar();
id: 11
- code: |
img = imread('images/penguins.png')
figure(figsize=(10, 5))
subplot(2, 2, 1)
imshow(img)
subplot(2, 2, 2)
imshow(img[::2,::2])
subplot(2, 2, 3)
imshow(img[225:,100:250])
subplot(2, 2, 4)
imshow(img[:,:,1])
id: 12
metadata:
slideshow:
slide_type: slide
- markdown: |
Use a for loop to plot the 3 channels of the image in a sub-plot,
i.e. r, g, b color channels.
metadata:
slideshow:
slide_type: slide
- code: |
# Solution.
- markdown: |
## Histogram of image pixel data
- Changing the dimensions of a numpy array.
- Making a 2D array into a 1D array.
metadata:
slideshow:
slide_type: slide
- code: |
a = np.arange(9)
a.shape = (3, 3)
a.ravel()
id: 13
- code: |
np.ravel(img[:, :, 0]).shape
id: 14
- code: |
# Doing more
#print(numpy.ravel(img[:,:,0]).shape)
hist(numpy.ravel(img[:,:,3]));
id: 15
metadata:
slideshow:
slide_type: slide
- code: |
# Putting it together
print(numpy.ravel(img[:,:,0]).shape)
for color in [0, 1, 2, 3]:
subplot(2, 2, color + 1)
hist(numpy.ravel(img[:,:,color]), bins=40, density=True, edgecolor='b');
id: 17
metadata:
slideshow:
slide_type: slide
- markdown: |
## Pie charts
| **Cancer** | Lung | Breast | Colon | Prostate | Melanoma | Bladder |
|-------------|------|--------|-------|----------|----------|---------|
| **Numbers** | 42 | 50 | 32 | 55 | 9 | 12 |
metadata:
slideshow:
slide_type: slide
- code: |
# Solution
cancer = ['Lung', 'Breast', 'Colon', 'Prostate', 'Melanoma', 'Bladder']
numbers = [42, 50, 32, 55, 9, 12]
pie(numbers, labels=cancer);
id: 18
metadata:
slideshow:
slide_type: slide
- markdown: |
## More statistics
- Covariance, correlation
- Linear regression
metadata:
slideshow:
slide_type: slide
- markdown: |
## Covariance/correlation
$$Cov(X, Y) = E[(X-\mu_x)(Y - \mu_y)] = E[XY] - E[X]E[Y]$$
$$Corr(X, Y) = Cov(X, Y)/\sqrt{Var(X) Var(Y)}$$
metadata:
slideshow:
slide_type: slide
- code: |
# Loading some data
x, y = loadtxt('data/data.txt', unpack=True)
metadata:
slideshow:
slide_type: slide
- code: |
np.cov(x, y)
- code: |
np.corrcoef(x, y)
- markdown: |
## Trying with other data
- Find the correlation coefficient and covariance
- Plot the data.
metadata:
slideshow:
slide_type: slide
- code: |
x1 = np.array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y1 = np.array([30, 33, 53, 73, 78, 85, 91, 92, 100, 120])
- code: |
# Your solution.
- markdown: |
## Simple linear regression
- Already seen how to do least-square fits with numpy
- Simpler way with `scipy.stats.linregress`
- Can also use `np.polyfit`
metadata:
slideshow:
slide_type: slide
- code: |
scipy.stats.linregress(x1, y1)
- code: |
# Result is a named tuple (collections.namedtuple)!
- code: |
res = scipy.stats.linregress(x1, y1)
metadata:
slideshow:
slide_type: slide
- code: |
res
- code: |
res[0]
- code: |
res.slope
- code: |
# Using np.polyfit
np.polyfit(x1, y1, deg=1)
metadata:
slideshow:
slide_type: slide
- code: |
np.polyfit?
- markdown: |
* Use `deg=1` for linear regression.
* Use `deg=2` for quadratic functions.
* ...
- code: |
# Showing the results
res = np.polyfit(x1, y1, deg=1)
# or
# scipy.stats.linregress(x1, y1)
plot(x1, y1, 'o')
plot(x1, res[0]*x1 + res[1]);
metadata:
slideshow:
slide_type: slide
# The lines below here may be deleted if you do not need them.
# ---------------------------------------------------------------------------
metadata:
celltoolbar: Slideshow
kernelspec:
display_name: Python 3
language: python
name: python3
language_info:
codemirror_mode:
name: ipython
version: 3
file_extension: .py
mimetype: text/x-python
name: python
nbconvert_exporter: python
pygments_lexer: ipython3
version: 3.6.0
rise:
scroll: true
transition: none
nbformat: 4
nbformat_minor: 2
|