summaryrefslogtreecommitdiff
path: root/cbse/pandas.ipyml
blob: 60b115e998a7d1304a463a2cf585b870d3b6f37d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
cells:

- markdown: |
    Pandas
    ======
    
    - Provides a powerful `DataFrame` object.
    - Makes it easy to deal with "Tabular" data.
    - Very easy to read, process and visualize data.
    - See http://pandas.pydata.org


- code: |
    %matplotlib inline
    import numpy as np
    import pandas as pd

  id: 0

- code: |
    x = np.linspace(0, 2*np.pi, 100)
    sin = np.sin(x)
    cos = np.cos(x)

  id: 1

- code: |
    df = pd.DataFrame({'x': x, 'sin': sin, 'cos': cos, 'x-data':x})
    # OR
    #df = pd.DataFrame(dict(x=x, sin=sin, cos=cos))

  id: 2

- code: |
    df.head() # or df.tail()

  id: 3

- code: |
    df.tail()

  id: 4

- code: |
    df.describe()

  id: 5

- code: |
    df1 = df[10:13]
    df1.head()

  id: 6

- code: |
    df.x[::10]

  id: 7

- code: |
    df1.describe()

  id: 8

- code: |
    # df.x-data[:5] will not work!!
    df['x-data'][:5]

  id: 9

- code: |
    df['x'][:5]

  id: 10

- code: |
    df.x[:10]

  id: 11

- code: |
    df.columns

  id: 12

- code: |
    len(df)

  id: 13

- code: |
    df.index

  id: 14

- code: |
    df1 = df.copy()
    df1.head()

  id: 15

- markdown: |
    Indexing
    =========
    
    - Give me a data frame, where all cosine values are >0.


- code: |
    y = np.linspace(10, 11, 11)
    y

  id: 16

- code: |
    y> 10.5

  id: 17

- code: |
    cond = y > 10.5
    y[y > 10.7]

  id: 18

- code: |


  id: 19

- code: |


  id: 20

- code: |


  id: 21

- code: |
    condition = df.cos > 0.0
    print(len(condition))

  id: 22

- code: |
    df_positive_cos = df[condition]
    df_positive_cos.describe()

  id: 23

- code: |
    # Combining conditionals
    cond1 = df.sin > 0.0
    df_all_positive = df[condition & cond1]
    df_all_positive.describe()

  id: 24

- code: |
    df_all_positive = df[(df.cos > 0.0) & (df.sin > 0)]
    df_all_positive.describe()

  id: 25

- code: |
    c = np.array([True, False, True, False])
    c1 = np.array([False, True, False, False])
    ~(c | c1)

  id: 26

- code: |
    cond1 = df_positive_cos.sin > 0.0
    df_all_positive = df_positive_cos[cond1]
    df_all_positive.describe()

  id: 27

- code: |


  id: 28

- code: |
    # This adds a new column sincos
    df['sincos'] = df.sin*df.cos
    len(df.sincos)

  id: 29

- code: |
    df.describe()

  id: 30

- code: |
    # Remove a column with del.
    if 'x-data' in df:
        del df['x-data']
    df.head()

  id: 31

- markdown: |
    Plotting
    =========


- code: |
    df.plot() 
    # or
    #df.plot.line()

  id: 32

- markdown: |
    Notice that everything is plotted w.r.t. the index!
    Let us fix this!


- code: |
    df.plot.line(x='x', y=['sin', 'cos'])

  id: 33

- code: |
    # See what this does
    
    df[(df.sin > 0.0) ^ (df.cos < 0.0)].plot.line(x='x', marker='o')

  id: 34

- code: |
    df.plot.hist(y='cos')
    # or
    #df.plot(y='cos', kind='hist')

  id: 35

- markdown: |
    Input and output CSV and other file formats
    --------------------------------------------
    
    - `pd.read_csv()`
    - `df.to_csv()`
    - Can read/save to clip board.
    - Directly read from URLs.


- code: |
    df.to_csv('sincos.csv', index=False)

  id: 36

- code: |
    df1 = pd.read_csv('sincos.csv')
    df1.head()

  id: 37

- code: |


  id: 38

- code: |


  id: 39

- markdown: |
    ### Conversion to LaTeX and HTML


- code: |
    print(df[:5].to_latex())

  id: 40

- code: |
    print(df[:5].to_latex(index=False))

  id: 41

- code: |
    print(df[:5].to_html())

  id: 42

- code: |
    from IPython.display import HTML
    HTML(df[:5].to_html())

  id: 43

- markdown: |
    Selecting from the clipboard
    =============================
    
    - Let us select data from wikipedia:
    - https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)_per_capita
    
    Select some data and then do this:


- code: |
    df2 = pd.read_clipboard()
    df2.columns = ['index', 'country', 'GDP']
    df2.head()

  id: 44

- code: |
    url = 'http://www.aero.iitb.ac.in/~prabhu/tmp/sslc_small.csv'
    df = pd.read_csv(url, sep=';')

  id: 45

- code: |
    df.head()
    #df.describe()

  id: 46

- code: |
    df.fl.iloc[0] = np.nan

  id: 47

- code: |
    df.head()

  id: 48

- code: |
    df.describe()

  id: 49

- code: |
    pd.read_csv?

  id: 50

- markdown: |
    Exercise
    --------
    
    Look at the following:
    
    - https://data.gov.in/catalog/annual-and-seasonal-maximum-temperature-india
    - https://data.gov.in/catalog/annual-and-seasonal-minimum-temperature-india
    
    
    Download the csv file into a `datafile.csv` on your machine.


- code: |
    df = pd.read_csv('datafile.csv')
    df.head()

  id: 51

- code: |
    df.plot.line(x='YEAR')

  id: 52

- code: |


  id: 53

- markdown: |
    Exercise
    ---------
    
    
    Consider a smaller file:
    
    - File is at: http://www.aero.iitb.ac.in/~prabhu/tmp/sslc_small.csv


- code: |
    url = 'http://www.aero.iitb.ac.in/~prabhu/tmp/sslc_small.csv'
    df = pd.read_csv(url)
    df.head()  # Produces only one strange column of data!

  id: 54

- markdown: |
    Notice that this data is read incorrectly, this is because the separator is not a comma but a ';' so use this.


- code: |
    df = pd.read_csv(url, sep=';')
    df.head()

  id: 55

- code: |
    df['region'].value_counts()

  id: 56

- code: |
    df.plot.scatter(x='fl', y='math')

  id: 57

- markdown: |
    There are more options to `pd.read_csv`, for example if `'AA'` is a value indicating a non-existing value you can pass an option, called `na_values`.  Read more on the documentation for `read_csv`.


- code: |
    url = 'http://www.aero.iitb.ac.in/~prabhu/tmp/sslc1.csv.gz'

  id: 58

- markdown: |
    - This has a very large CSV file that is gzipped to save space. 
    - It can be loaded with the same method.
    - You can download it and see the file.
    
    To unzip it if you want you can do
    
    ```
    $ gunzip sslc1.csv.gz
    ```
    
    The file has missing values in the form of 'AA' entries for absent students.


- code: |
    df = pd.read_csv(url, sep=';', na_values='AA')

  id: 59

- markdown: |
    If you have the `sslc1.csv` file locally you can do this:


- code: |
    df = pd.read_csv('sslc1.csv', sep=';', na_values='AA')
    df.head()

  id: 60

- code: |
    df.describe()

  id: 61

- code: |
    df['pass'].value_counts()

  id: 62

- code: |
    df.groupby('region')['pass'].value_counts()

  id: 63

- code: |
    df.plot.hist(y='sl')

  id: 64

- markdown: |
    ## Pivoting
    
    - Powerful operation to group the data
    - Performs a multi-dimensional summarization of the data
    
    Here is a simple example


- code: |
    pd.pivot_table(df, index=['region'])

  id: 65

- markdown: |
    The default aggregation function here is an average, i.e. `np.average`.


- code: |
    # This is not useful but tells you how this can be changed.
    pd.pivot_table(df, index=['region'], aggfunc=np.sum)

  id: 66

- markdown: |
    More information
    ==================
    
    - http://pandas.pydata.org
    - Go through the tutorials here:
    
    http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/tree/v0.1/cookbook/
    
    - Go over chapter 1 to 7.
    
    Excellent material on pivot tables with pandas 
    
    - https://pbpython.com/pandas-pivot-table-explained.html
    
    An excellent book on data science related tools has a nice section on pivot tables.
    
    - https://jakevdp.github.io/PythonDataScienceHandbook/03.09-pivot-tables.html
    
    Also has other material on pandas
    
    - https://jakevdp.github.io/PythonDataScienceHandbook/03.00-introduction-to-pandas.html
    
    The notebooks can also be edited live if you wish.


- code: |


  id: 67

# The lines below here may be deleted if you do not need them.
# ---------------------------------------------------------------------------
metadata:
  kernelspec:
    display_name: Python 3
    language: python
    name: python3
  language_info:
    codemirror_mode:
      name: ipython
      version: 3
    file_extension: .py
    mimetype: text/x-python
    name: python
    nbconvert_exporter: python
    pygments_lexer: ipython3
    version: 3.6.0
nbformat: 4
nbformat_minor: 1

# ---------------------------------------------------------------------------
data:
  [{execution_count: 1, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: null, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: 56, outputs: []}, {execution_count: 62, outputs: [{data: {text/html: "<div>\n\
              <style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align:\
              \ middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align:\
              \ top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n\
              \    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n\
              \    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>region</th>\n\
              \      <th>roll_number</th>\n      <th>name</th>\n      <th>fl</th>\n\
              \      <th>sl</th>\n      <th>math</th>\n      <th>sci</th>\n      <th>ss</th>\n\
              \      <th>total</th>\n      <th>pass</th>\n      <th>withheld</th>\n\
              \      <th>extra</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n  \
              \    <th>0</th>\n      <td>A</td>\n      <td>10001</td>\n      <td>T N</td>\n\
              \      <td>53</td>\n      <td>36</td>\n      <td>28</td>\n      <td>16</td>\n\
              \      <td>44</td>\n      <td>177</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>A</td>\n\
              \      <td>10002</td>\n      <td>A R</td>\n      <td>58</td>\n      <td>37</td>\n\
              \      <td>42</td>\n      <td>35</td>\n      <td>40</td>\n      <td>212</td>\n\
              \      <td>P</td>\n      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n\
              \    <tr>\n      <th>2</th>\n      <td>A</td>\n      <td>10003</td>\n\
              \      <td>A M</td>\n      <td>72</td>\n      <td>56</td>\n      <td>71</td>\n\
              \      <td>55</td>\n      <td>70</td>\n      <td>324</td>\n      <td>P</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>3</th>\n\
              \      <td>A</td>\n      <td>10004</td>\n      <td>S A</td>\n      <td>87</td>\n\
              \      <td>64</td>\n      <td>83</td>\n      <td>58</td>\n      <td>65</td>\n\
              \      <td>357</td>\n      <td>P</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \    </tr>\n    <tr>\n      <th>4</th>\n      <td>A</td>\n      <td>10005</td>\n\
              \      <td>N A</td>\n      <td>59</td>\n      <td>45</td>\n      <td>50</td>\n\
              \      <td>35</td>\n      <td>48</td>\n      <td>237</td>\n      <td>P</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n  </tbody>\n</table>\n\
              </div>", text/plain: '  region  roll_number name  fl  sl  math  sci  ss  total
              pass  withheld  extra
  
              0      A        10001  T N  53  36    28   16  44    177  NaN       NaN    NaN
  
              1      A        10002  A R  58  37    42   35  40    212    P       NaN    NaN
  
              2      A        10003  A M  72  56    71   55  70    324    P       NaN    NaN
  
              3      A        10004  S A  87  64    83   58  65    357    P       NaN    NaN
  
              4      A        10005  N A  59  45    50   35  48    237    P       NaN    NaN'},
          execution_count: 62, metadata: {}, output_type: execute_result}]}, {execution_count: 66,
      outputs: []}, {execution_count: 68, outputs: [{data: {text/html: "<div>\n<style\
              \ scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align:\
              \ middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align:\
              \ top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n\
              \    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n\
              \    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>region</th>\n\
              \      <th>roll_number</th>\n      <th>name</th>\n      <th>fl</th>\n\
              \      <th>sl</th>\n      <th>math</th>\n      <th>sci</th>\n      <th>ss</th>\n\
              \      <th>total</th>\n      <th>pass</th>\n      <th>withheld</th>\n\
              \      <th>extra</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n  \
              \    <th>0</th>\n      <td>A</td>\n      <td>10001</td>\n      <td>T N</td>\n\
              \      <td>NaN</td>\n      <td>36</td>\n      <td>28</td>\n      <td>16</td>\n\
              \      <td>44</td>\n      <td>177</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>A</td>\n\
              \      <td>10002</td>\n      <td>A R</td>\n      <td>58.0</td>\n     \
              \ <td>37</td>\n      <td>42</td>\n      <td>35</td>\n      <td>40</td>\n\
              \      <td>212</td>\n      <td>P</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \    </tr>\n    <tr>\n      <th>2</th>\n      <td>A</td>\n      <td>10003</td>\n\
              \      <td>A M</td>\n      <td>72.0</td>\n      <td>56</td>\n      <td>71</td>\n\
              \      <td>55</td>\n      <td>70</td>\n      <td>324</td>\n      <td>P</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>3</th>\n\
              \      <td>A</td>\n      <td>10004</td>\n      <td>S A</td>\n      <td>87.0</td>\n\
              \      <td>64</td>\n      <td>83</td>\n      <td>58</td>\n      <td>65</td>\n\
              \      <td>357</td>\n      <td>P</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \    </tr>\n    <tr>\n      <th>4</th>\n      <td>A</td>\n      <td>10005</td>\n\
              \      <td>N A</td>\n      <td>59.0</td>\n      <td>45</td>\n      <td>50</td>\n\
              \      <td>35</td>\n      <td>48</td>\n      <td>237</td>\n      <td>P</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n  </tbody>\n</table>\n\
              </div>", text/plain: "  region  roll_number name    fl  sl  math  sci\
              \  ss  total pass  withheld  \\\n0      A        10001  T N   NaN  36\
              \    28   16  44    177  NaN       NaN   \n1      A        10002  A R\
              \  58.0  37    42   35  40    212    P       NaN   \n2      A        10003\
              \  A M  72.0  56    71   55  70    324    P       NaN   \n3      A   \
              \     10004  S A  87.0  64    83   58  65    357    P       NaN   \n4\
              \      A        10005  N A  59.0  45    50   35  48    237    P      \
              \ NaN   \n\n   extra  \n0    NaN  \n1    NaN  \n2    NaN  \n3    NaN \
              \ \n4    NaN  "}, execution_count: 68, metadata: {}, output_type: execute_result}]},
    {execution_count: 67, outputs: [{data: {text/html: "<div>\n<style scoped>\n    .dataframe\
              \ tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\
              \n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n\
              \    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n\
              <table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"\
              text-align: right;\">\n      <th></th>\n      <th>roll_number</th>\n \
              \     <th>fl</th>\n      <th>sl</th>\n      <th>math</th>\n      <th>sci</th>\n\
              \      <th>ss</th>\n      <th>total</th>\n      <th>withheld</th>\n  \
              \    <th>extra</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n    \
              \  <th>count</th>\n      <td>40.000000</td>\n      <td>39.000000</td>\n\
              \      <td>40.000000</td>\n      <td>40.000000</td>\n      <td>40.000000</td>\n\
              \      <td>40.000000</td>\n      <td>40.000000</td>\n      <td>0.0</td>\n\
              \      <td>0.0</td>\n    </tr>\n    <tr>\n      <th>mean</th>\n      <td>27708.800000</td>\n\
              \      <td>73.230769</td>\n      <td>56.375000</td>\n      <td>65.425000</td>\n\
              \      <td>51.825000</td>\n      <td>63.500000</td>\n      <td>309.850000</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>std</th>\n\
              \      <td>29338.523097</td>\n      <td>12.616742</td>\n      <td>15.903052</td>\n\
              \      <td>23.915329</td>\n      <td>18.092196</td>\n      <td>17.558693</td>\n\
              \      <td>81.745869</td>\n      <td>NaN</td>\n      <td>NaN</td>\n  \
              \  </tr>\n    <tr>\n      <th>min</th>\n      <td>10001.000000</td>\n\
              \      <td>43.000000</td>\n      <td>36.000000</td>\n      <td>25.000000</td>\n\
              \      <td>16.000000</td>\n      <td>35.000000</td>\n      <td>161.000000</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>25%</th>\n\
              \      <td>19495.750000</td>\n      <td>65.500000</td>\n      <td>44.000000</td>\n\
              \      <td>44.750000</td>\n      <td>36.750000</td>\n      <td>50.000000</td>\n\
              \      <td>247.000000</td>\n      <td>NaN</td>\n      <td>NaN</td>\n \
              \   </tr>\n    <tr>\n      <th>50%</th>\n      <td>27395.500000</td>\n\
              \      <td>75.000000</td>\n      <td>53.500000</td>\n      <td>61.500000</td>\n\
              \      <td>52.000000</td>\n      <td>61.500000</td>\n      <td>304.000000</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>75%</th>\n\
              \      <td>29276.250000</td>\n      <td>83.000000</td>\n      <td>70.250000</td>\n\
              \      <td>86.750000</td>\n      <td>60.250000</td>\n      <td>74.500000</td>\n\
              \      <td>357.000000</td>\n      <td>NaN</td>\n      <td>NaN</td>\n \
              \   </tr>\n    <tr>\n      <th>max</th>\n      <td>199976.000000</td>\n\
              \      <td>90.000000</td>\n      <td>90.000000</td>\n      <td>100.000000</td>\n\
              \      <td>86.000000</td>\n      <td>97.000000</td>\n      <td>456.000000</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n  </tbody>\n</table>\n\
              </div>", text/plain: "         roll_number         fl         sl     \
              \   math        sci         ss  \\\ncount      40.000000  39.000000  40.000000\
              \   40.000000  40.000000  40.000000   \nmean    27708.800000  73.230769\
              \  56.375000   65.425000  51.825000  63.500000   \nstd     29338.523097\
              \  12.616742  15.903052   23.915329  18.092196  17.558693   \nmin    \
              \ 10001.000000  43.000000  36.000000   25.000000  16.000000  35.000000\
              \   \n25%     19495.750000  65.500000  44.000000   44.750000  36.750000\
              \  50.000000   \n50%     27395.500000  75.000000  53.500000   61.500000\
              \  52.000000  61.500000   \n75%     29276.250000  83.000000  70.250000\
              \   86.750000  60.250000  74.500000   \nmax    199976.000000  90.000000\
              \  90.000000  100.000000  86.000000  97.000000   \n\n            total\
              \  withheld  extra  \ncount   40.000000       0.0    0.0  \nmean   309.850000\
              \       NaN    NaN  \nstd     81.745869       NaN    NaN  \nmin    161.000000\
              \       NaN    NaN  \n25%    247.000000       NaN    NaN  \n50%    304.000000\
              \       NaN    NaN  \n75%    357.000000       NaN    NaN  \nmax    456.000000\
              \       NaN    NaN  "}, execution_count: 67, metadata: {}, output_type: execute_result}]},
    {execution_count: 69, outputs: []}, {execution_count: null, outputs: []}, {execution_count: null,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: 70, outputs: [
        {data: {text/html: "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type\
              \ {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr\
              \ th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th\
              \ {\n        text-align: right;\n    }\n</style>\n<table border=\"1\"\
              \ class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\"\
              >\n      <th></th>\n      <th>region;roll_number;name;fl;sl;math;sci;ss;total;pass;withheld;extra</th>\n\
              \    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>A;010001;T\
              \ N;053;036;28;16;44;177;;;</td>\n    </tr>\n    <tr>\n      <th>1</th>\n\
              \      <td>A;010002;A R;058;037;42;35;40;212;P;;</td>\n    </tr>\n   \
              \ <tr>\n      <th>2</th>\n      <td>A;010003;A M;072;056;71;55;70;324;P;;</td>\n\
              \    </tr>\n    <tr>\n      <th>3</th>\n      <td>A;010004;S A;087;064;83;58;65;357;P;;</td>\n\
              \    </tr>\n    <tr>\n      <th>4</th>\n      <td>A;010005;N A;059;045;50;35;48;237;P;;</td>\n\
              \    </tr>\n  </tbody>\n</table>\n</div>", text/plain: "  region;roll_number;name;fl;sl;math;sci;ss;total;pass;withheld;extra\n\
              0               A;010001;T N;053;036;28;16;44;177;;;                 \n\
              1              A;010002;A R;058;037;42;35;40;212;P;;                 \n\
              2              A;010003;A M;072;056;71;55;70;324;P;;                 \n\
              3              A;010004;S A;087;064;83;58;65;357;P;;                 \n\
              4              A;010005;N A;059;045;50;35;48;237;P;;                 "},
          execution_count: 70, metadata: {}, output_type: execute_result}]}, {execution_count: 71,
      outputs: [{data: {text/html: "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type\
              \ {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr\
              \ th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th\
              \ {\n        text-align: right;\n    }\n</style>\n<table border=\"1\"\
              \ class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\"\
              >\n      <th></th>\n      <th>region</th>\n      <th>roll_number</th>\n\
              \      <th>name</th>\n      <th>fl</th>\n      <th>sl</th>\n      <th>math</th>\n\
              \      <th>sci</th>\n      <th>ss</th>\n      <th>total</th>\n      <th>pass</th>\n\
              \      <th>withheld</th>\n      <th>extra</th>\n    </tr>\n  </thead>\n\
              \  <tbody>\n    <tr>\n      <th>0</th>\n      <td>A</td>\n      <td>10001</td>\n\
              \      <td>T N</td>\n      <td>53</td>\n      <td>36</td>\n      <td>28</td>\n\
              \      <td>16</td>\n      <td>44</td>\n      <td>177</td>\n      <td>NaN</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>1</th>\n\
              \      <td>A</td>\n      <td>10002</td>\n      <td>A R</td>\n      <td>58</td>\n\
              \      <td>37</td>\n      <td>42</td>\n      <td>35</td>\n      <td>40</td>\n\
              \      <td>212</td>\n      <td>P</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \    </tr>\n    <tr>\n      <th>2</th>\n      <td>A</td>\n      <td>10003</td>\n\
              \      <td>A M</td>\n      <td>72</td>\n      <td>56</td>\n      <td>71</td>\n\
              \      <td>55</td>\n      <td>70</td>\n      <td>324</td>\n      <td>P</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n    <tr>\n      <th>3</th>\n\
              \      <td>A</td>\n      <td>10004</td>\n      <td>S A</td>\n      <td>87</td>\n\
              \      <td>64</td>\n      <td>83</td>\n      <td>58</td>\n      <td>65</td>\n\
              \      <td>357</td>\n      <td>P</td>\n      <td>NaN</td>\n      <td>NaN</td>\n\
              \    </tr>\n    <tr>\n      <th>4</th>\n      <td>A</td>\n      <td>10005</td>\n\
              \      <td>N A</td>\n      <td>59</td>\n      <td>45</td>\n      <td>50</td>\n\
              \      <td>35</td>\n      <td>48</td>\n      <td>237</td>\n      <td>P</td>\n\
              \      <td>NaN</td>\n      <td>NaN</td>\n    </tr>\n  </tbody>\n</table>\n\
              </div>", text/plain: '  region  roll_number name  fl  sl  math  sci  ss  total
              pass  withheld  extra
  
              0      A        10001  T N  53  36    28   16  44    177  NaN       NaN    NaN
  
              1      A        10002  A R  58  37    42   35  40    212    P       NaN    NaN
  
              2      A        10003  A M  72  56    71   55  70    324    P       NaN    NaN
  
              3      A        10004  S A  87  64    83   58  65    357    P       NaN    NaN
  
              4      A        10005  N A  59  45    50   35  48    237    P       NaN    NaN'},
          execution_count: 71, metadata: {}, output_type: execute_result}]}, {execution_count: 72,
      outputs: [{data: {text/plain: 'C    13
  
              B     9
  
              A     9
  
              D     9
  
              Name: region, dtype: int64'}, execution_count: 72, metadata: {}, output_type: execute_result}]},
    {execution_count: 73, outputs: [{data: {text/plain: <matplotlib.axes._subplots.AxesSubplot
              at 0x11ee08828>}, execution_count: 73, metadata: {}, output_type: execute_result},
        {data: {image/png: 'iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAF+dJREFUeJzt3X+wXHd53/H3R5b824lsyWgcy4rNiDFJGazArQujwIANGaDUpoFQaDtVGTeaTgm/8ofs9I8SpnTGZjKlZDJDRsGlog0Yx4Kxh7QMHgXSTjt1K2GjGBtiY2Jbxj8UxSY2ICHhp3/suda1urrau3f3nN2779fMnd09e/bus2f33me/z/fHSVUhSdKJVnUdgCRpMpkgJEl9mSAkSX2ZICRJfZkgJEl9mSAkSX2ZICRJfZkgJEl9mSAkSX2t7jqA5Vi/fn1deumlXYchSVNl3759f11VF55qv6lOEJdeeil79+7tOgxJmipJHh5kP0tMkqS+TBCSpL5MEJKkvkwQkqS+TBCSpL7GliCS/MckTyW5d8G2C5LcmeSB5vL8ZnuS/H6SB5PsT/KqccUlaWU69NwRvvXoMxx67kjXoYxdW691nMNc/xPwB8DnFmy7AdhTVTcmuaG5fT3wVuBlzc/fAz7dXErSKd1+z2Ncv3s/a1at4ujzz/OJd76Sa7Zc3HVYY9Hmax1bC6Kq/jvwNydsvhbY1VzfBbxjwfbPVc//BtYmuWhcsUlaOQ49d4Trd+/n8NHnefbIMQ4ffZ4du/evyJZE26+17T6IDVX1eHP9CWBDc/1i4NEF+x1otv1/kmxPsjfJ3oMHD44vUklT4cDTP2HNqhf/K1uzahUHnv7JWJ5vsfLOKEs//X5X26+1s5nUVVVJaojH7QR2AszNzS358ZJWlo3nn8XR559/0bajzz/PxvPPGvlzLVbeGWXp52S/q83XCu23IJ6cLx01l0812x8DLlmw38ZmmyQtat25Z/CJd76SM9es4rwzVnPmmlV84p2vZN25Z4z0eRYr74yy9LPY72rrtc5ruwVxB7ANuLG5vH3B9t9Kcgu9zukfLihFSdKirtlyMVs3r+fA0z9h4/lnjeUf5nx55zDHv8EvLO+c7L6lxrLY86w794xWXuu8sSWIJF8A3gCsT3IA+Ci9xHBrkuuAh4F3N7v/V+BtwIPAj4H3jSsuSSvTunPPGOs/y1OVd0ZV+tl4/lkcPvazF207fOxnL/pd436t88aWIKrqvSe56+o++xbw/nHFIknLNV/e2XFC38D8P+rF7jv03JElfePv/Us8+e22TPVy35LUpsXKOye7b6md1wee/glnrVnNs0eOvbDtrDWrhypXLZcJQpKWYLHyzon3Lexwnu9T2LF7P1s3rz/p72h7pNJiXItJkkbkxLkLw8xbaHuk0mJsQUjSCPQrJW3dvH6o1kCbI5UWYwtCkpbpZHMXgKFbA+vOPYMrLlnbWXIAWxCStGyLzV2YlNbAMEwQkrRMp+pYbmvewqhZYpKkZZqkjuVRsgUhSSMwzaWkkzFBSNKITGsp6WQsMUmS+jJBSJL6MkFI0gQa5dnphmUfhCRNmFGenW45bEFI0gQZ5dnplssEIUkTZJgF/sbFBCFJE2Tml/tO8qEk9yb5dpIPN9suSHJnkgeay/O7iE2SujRJs7Jb76RO8grgN4ErgZ8CX03yFWA7sKeqbkxyA3ADcH3b8UlS1yZlVnYXo5h+Cbirqn4MkOTPgV8HrgXe0OyzC/gGJghJM2oSZmV3UWK6F3hdknVJzgbeBlwCbKiqx5t9ngA2dBCbpCFNwrh9jVbrLYiquj/JTcDXgB8B9wA/O2GfSlL9Hp9kO71yFJs2bRpztJIGMSnj9jVanXRSV9XNVfXqqno98DTwl8CTSS4CaC6fOsljd1bVXFXNXXjhhe0FLamvSRq3r9HqahTTS5rLTfT6Hz4P3AFsa3bZBtzeRWySlmaSxu1rtLpaamN3knXAUeD9VfVMkhuBW5NcBzwMvLuj2CQtwSSN29dodZIgqup1fbYdAq7uIBxJyzA/bn/HCX0QXY/A0fK5WJ+kZZuUcfsaLROEpJGYhHH7Gi3XYpI0Vs6PmF62ICSNjfMjppstCElj4fyI6WeCkDQWzo+YfiYISWPh/IjpZ4KQtCSDdjpP0nkNNBw7qSUNbKmdzs6PmG4mCEkDWdjpfJhe6WjH7v1s3bx+0X/8zo+YXpaYJA3ETufhTetcEFsQkgZip/NwpnkuiC0ISQOx03nppn0uiC0ISQOz03lp5sty8302cLwsNw3HzgQhaUnsdB7ctJflLDFJ0phMe1nOFoQkjdE0l+W6Oif1R5J8O8m9Sb6Q5MwklyW5K8mDSb6Y5PQuYpOkUVt37hlcccnaqUoO0EGCSHIx8EFgrqpeAZwGvAe4CfhkVW0Gngauazs2SdNrWucaTLKuSkyrgbOSHAXOBh4HrgL+cXP/LuB3gU93Ep2kqTLNcw0mWestiKp6DPg94BF6ieGHwD7gmao61ux2APDdlXRK0z7XYJJ1UWI6H7gWuAz4BeAc4C1LePz2JHuT7D148OCYopQ0LdpeAmSWSlldlJjeBHy/qg4CJPkSsBVYm2R104rYCDzW78FVtRPYCTA3N1fthCxpUrU512DWSlldjGJ6BHhNkrOTBLgauA/4OvCuZp9twO0dxCYNZZa+VU6atuYazGIpq/UWRFXdleQ24JvAMeBuei2CPwVuSfLxZtvNbccmDWPWvlVOojbmGkz7shnD6GQUU1V9FPjoCZsfAq7sIBxpaMOeI0GjN+4lQKZ92YxhuNSGtAyeI2F2TPuyGcNwqQ1pGWbxW+Usm+ZlM4ZhC0Jahln8VjnrpnXZjGHYgpCWada+VXbt0HNHPNYtMUFII+A5EtrhiLF2WWKSNBVmcR5C10wQkqaCI8baZ4KQNBUcMdY+E4SkqeCIsfbZSS1pajhirF0mCElTxRFj7bHEJEnqywQhSerLBCFJ6ssEIUnqywQhSerLBCGtcJ4OVcNymKu0grm4nZaj9RZEksuT3LPg52+TfDjJBUnuTPJAc3l+27FJK4mL22m5Wk8QVfXdqtpSVVuAVwM/Br4M3ADsqaqXAXua25KG5OJ2Wq6u+yCuBr5XVQ8D1wK7mu27gHd0FpW0Ari4nZar6wTxHuALzfUNVfV4c/0JYEO/ByTZnmRvkr0HDx5sI0ZpKrm4nZYrVdXNEyenAz8A/k5VPZnkmapau+D+p6tq0X6Iubm52rt377hDlaaap+jUiZLsq6q5U+3X5SimtwLfrKonm9tPJrmoqh5PchHwVIexSSuGi9tpWF2WmN7L8fISwB3Atub6NuD21iOSJL2gkwSR5BzgzcCXFmy+EXhzkgeANzW3JUkd6aTEVFU/AtadsO0QvVFNkqQJ0PUoJknShDJBSJL6MkFImiouPtiegfsgkpxGb/LaC4+pqkfGEZQk9ePig+0aKEEk+QDwUeBJYH7ufgGvHFNckvQiCxcfPNz8G9qxez9bN693nseYDNqC+BBweTPSSJJaN7/44GGOry81v/igCWI8Bu2DeBT44TgDkaTFuPhg+xZtQST57ebqQ8A3kvwp8ELPUFX9+zHGJkkvmF98cMcJfRC2HsbnVCWm85rLR5qf05sf6PVBSFJrrtlyMVs3r3fxwZYsmiCq6mMASX6jqv5k4X1JfmOcgUlSPy4+2J5B+yB+Z8BtkqQV4lR9EG8F3gZcnOT3F9z1c8CxcQYmSerWqfogfgDsBa4B9i3Y/izwkXEFJWl0PGGQhnWqPohvAd9K8vmqOtpSTJJGxJnHWo5B+yAuTXJbkvuSPDT/M9bIJC3LwpnHzx45xuGjz7Nj937XMNLABk0QnwU+Ta/f4Y3A54D/Mq6gJC3f/MzjheZnHrfJxfWm16BLbZxVVXuSpKoeBn43yT7g34wxNknLMAkzjy1xTbdBWxBHkqwCHkjyW0n+IXDusE+aZG1TsvpOkvuTvDbJBUnuTPJAc3n+sL9f0vGZx2euWcV5Z6zmzDWrWp15bIlr+i1lsb6zgQ8C/5ZememfLeN5PwV8tareleT05nf/a2BPVd2Y5AbgBuD6ZTyHNPO6nHns4nrTb9AEUcB/Bn4RWNNs+yOGWO47yc8Drwf+OUBV/RT4aZJrgTc0u+0CvoEJQlq2rmYeT0KJS8szaInpj+l1VL8TeHvz8w+GfM7LgIPAZ5PcneQzSc4BNlTV480+T9A7OZGkKdV1iUvLN2gL4mBV3THC53wV8IGquivJp+iVk15QVZWk72KASbYD2wE2bdo0opAkjYOL6023QRPER5N8BtjDi5f7/tIQz3kAOFBVdzW3b6OXIJ5MclFVPZ7kIuCpfg+uqp3AToC5uTlXlJUmnIvrTa9BE8T7gJfT639YeMrRJSeIqnoiyaNJLq+q7wJXA/c1P9uAG5vL25f6uyVJozNogvi7VXX5CJ/3A8AfNyOYHqKXgFYBtya5DngYePcIn0+StESDJoj/leSXq+q+UTxpVd0DzPW56+pR/H5J0vINmiBeA9yT5Pv0+iBCry95ycNcJU03V4edHYMmiLeMNQpJU8GlM2bLQAmiWX9J0gxbuHTG/OzoHbv3s3XzelsSK9SgE+UkzbhJWR1W7TFBSBqIS2fMHhOEpIG4dMbsGbSTWpJcOmPGmCAkLYlLZ8wOS0ySpL5MEJKkvkwQkqS+TBCSpL5MEJKkvkwQkqS+TBCSpL5MEFrRDj13hG89+gyHnjty6p0lvYgT5bRiuTS1tDydtCCS/FWSv0hyT5K9zbYLktyZ5IHm8vwuYtPKsHBp6mePHOPw0efZsXu/LQlpCbosMb2xqrZU1fypR28A9lTVy4A9zW1NuWFKPKMoC7k09WAswWkxk1RiuhZ4Q3N9F/AN4PqugtHyDVPiGVVZyKWpT80SnE6lqxZEAV9Lsi/J9mbbhqp6vLn+BLChm9A0CsOUeEZZFnJp6sVZgtMgumpB/GpVPZbkJcCdSb6z8M6qqiTV74FNQtkOsGnTpvFHqqHMl3jmT00Jx0s8J/snPcxjFnPNlov55Yt+jnsefYYtl6xl84bzlv5CVqhRH2utTJ0kiKp6rLl8KsmXgSuBJ5NcVFWPJ7kIeOokj90J7ASYm5vrm0TUvWFKPKMuC1lCOTlLcBpE6yWmJOckOW/+OvBrwL3AHcC2ZrdtwO1tx6bRGabEM8qykCWUxVmC0yC6aEFsAL6cZP75P19VX03yf4Fbk1wHPAy8u4PYNELDnH1sVGcss4Ryap4dTqfSeoKoqoeAK/psPwRc3XY8Gq9hzj42ijOWWUIZjGeH02JcakMrkiWU45zroGFN0jwIaaQsodhRr+UxQWhFm+USysKO+vm+mB2797N18/qZPSZaGktM0grV9nIjlrJWHlsQ0grVZke9payVaSZbEH7T0Sxoq6PeOScr18y1IPymo1nSRke9c05WrplKEHbaaRaNu6PeOScr10yVmDxHgDSYpZRhnXOycs1UC8JvOtKpDVOGdc7JyjRTLQi/6Wi5pnGAw1JiXk6H87pzz+CKS9b697SCzFQLAvymo+FN4wCHpcZsh7MWmqkWxDy/6WippnEo5zAxW4bVQjOZINS9aSvVTOMAh2FitgyrhWauxKTuTWOpZhq/WQ8bs2VYzbMFoVZNY6kGpvOb9XJitgwrsAWhlk1zJ+g0frOe9JgPPXdkYmOTCUItm8ZSzULTuHz4pMY8jaXGWdNZiSnJaUnuTvKV5vZlSe5K8mCSLyY5vavYND7TWKrR6E1rqXHWdNmC+BBwP/Bzze2bgE9W1S1J/hC4Dvh0V8FpfCa97KHxm+ZS4yzppAWRZCPw94HPNLcDXAXc1uyyC3hHF7GpHXaCzrZpLzXOiq5KTP8B2AEvfH1YBzxTVcea2weAvsXIJNuT7E2y9+DBg+OPVNLIWWqcDq2XmJK8HXiqqvYlecNSH19VO4GdAHNzczXi8CS1xFLj5OuiD2IrcE2StwFn0uuD+BSwNsnqphWxEXisg9gktWhSR1ipp/USU1X9TlVtrKpLgfcAf1ZV/wT4OvCuZrdtwO1txzasaVs2YiXyPZBGb5LmQVwP3JLk48DdwM0dxzMQx3J3z/dAGo9UTW8Zf25urvbu3dvZ8x967ghbb/ozDh89PhrjzDWr+J/XX2WzuSW+B9LSJdlXVXOn2s+1mJZhGlf4XGl8D6TxMUEsg2O5u+d7II2PCWIZHMvdPd8DaXzsgxgBV6Tsnu+BNLhB+yAmaRTT1HIsd/d8D6TRs8QkTSDndWgS2IKQJozzOjQpbEFIE8TzJGiSmCCkCeK8Dk0SE4Q0QZzXoUligpAmiPM6NEnspJYmjOdJ0KQwQUgTyHkdmgSWmCRJfZkgJEl9mSAkSX2ZICRJfbWeIJKcmeT/JPlWkm8n+Viz/bIkdyV5MMkXk5zedmySpOO6aEEcAa6qqiuALcBbkrwGuAn4ZFVtBp4GrusgNklSo/UEUT3PNTfXND8FXAXc1mzfBbyj7dgkScd10geR5LQk9wBPAXcC3wOeqapjzS4HAJevlKQOdZIgqupnVbUF2AhcCbx80Mcm2Z5kb5K9Bw8eHFuMkjTrOh3FVFXPAF8HXgusTTI/s3sj8NhJHrOzquaqau7CCy9sKVJJmj1djGK6MMna5vpZwJuB++klinc1u20Dbm87tlniGcsknUoXazFdBOxKchq9BHVrVX0lyX3ALUk+DtwN3NxBbDPBM5ZJGkTrCaKq9gO/0mf7Q/T6IzRGC89YdpjeeQd27N7P1s3rXRxO0os4k3rGeMYySYMyQcwYz1gmaVAmiBnjGcskDcoTBs0gz1gmaRAmiBnlGcsknYolphM4P0CSemxBLOD8AEk6zhZEY+H8gGePHOPw0efZsXu/LQlJM8sE0XB+gCS9mAmi4fwASXoxE0TD+QGS9GJ2Ui/g/ABJOs4EcQLnB0hSjyUmSVJfJghJUl8mCElSXyYISVJfJghJUl+pqq5jGFqSg8DDXcfRsvXAX3cdRIdm/fWDxwA8BrC8Y/CLVXXhqXaa6gQxi5Lsraq5ruPoyqy/fvAYgMcA2jkGlpgkSX2ZICRJfZkgps/OrgPo2Ky/fvAYgMcAWjgG9kFIkvqyBSFJ6ssEMcGS/FWSv0hyT5K9zbYLktyZ5IHm8vyu4xynJGuT3JbkO0nuT/LaWToGSS5v3v/5n79N8uEZOwYfSfLtJPcm+UKSM5NcluSuJA8m+WKS07uOc5ySfKh5/d9O8uFm29g/AyaIyffGqtqyYDjbDcCeqnoZsKe5vZJ9CvhqVb0cuAK4nxk6BlX13eb93wK8Gvgx8GVm5BgkuRj4IDBXVa8ATgPeA9wEfLKqNgNPA9d1F+V4JXkF8JvAlfT+Bt6eZDMtfAZMENPnWmBXc30X8I4OYxmrJD8PvB64GaCqflpVzzBDx+AEVwPfq6qHma1jsBo4K8lq4GzgceAq4Lbm/pX++n8JuKuqflxVx4A/B36dFj4DJojJVsDXkuxLsr3ZtqGqHm+uPwFs6Ca0VlwGHAQ+m+TuJJ9Jcg6zdQwWeg/wheb6TByDqnoM+D3gEXqJ4YfAPuCZ5p8lwAHg4m4ibMW9wOuSrEtyNvA24BJa+AyYICbbr1bVq4C3Au9P8vqFd1ZvCNpKHoa2GngV8Omq+hXgR5zQjJ6BYwBAU2O/BviTE+9bycegqatfS+/Lwi8A5wBv6TSollXV/fRKal8DvgrcA/zshH3G8hkwQUyw5tsTVfUUvbrzlcCTSS4CaC6f6i7CsTsAHKiqu5rbt9FLGLN0DOa9FfhmVT3Z3J6VY/Am4PtVdbCqjgJfArYCa5uSE8BG4LGuAmxDVd1cVa+uqtfT63P5S1r4DJggJlSSc5KcN38d+DV6Tc07gG3NbtuA27uJcPyq6gng0SSXN5uuBu5jho7BAu/leHkJZucYPAK8JsnZScLxz8DXgXc1+6zk1w9Akpc0l5vo9T98nhY+A06Um1BJXkqv1QC9Usvnq+rfJVkH3ApsoreS7bur6m86CnPskmwBPgOcDjwEvI/eF5tZOgbn0PtH+dKq+mGzbWY+B0k+Bvwj4BhwN/Av6PU53AJc0Gz7p1V1pLMgxyzJ/wDWAUeB366qPW18BkwQkqS+LDFJkvoyQUiS+jJBSJL6MkFIkvoyQUiS+jJBSCOU5IPNqrOPJfmDruORlmP1qXeRtAT/it7s3zcBYz2hvDRutiCkEUnyh8BLgf8GrNjzM2h2mCCkEamqfwn8AHgjvfVypKlmgpAk9WWCkCT1ZYKQJPVlgpAk9eVqrpKkvmxBSJL6MkFIkvoyQUiS+jJBSJL6MkFIkvoyQUiS+jJBSJL6MkFIkvr6fxzn9LxPLj+7AAAAAElFTkSuQmCC
  
              ', text/plain: <Figure size 432x288 with 1 Axes>}, metadata: {needs_background: light},
          output_type: display_data}]}, {execution_count: 3, outputs: []}, {execution_count: 4,
      outputs: []}, {execution_count: null, outputs: []}, {execution_count: null, outputs: []},
    {execution_count: 14, outputs: [{data: {text/plain: 'P    159072
  
              Name: pass, dtype: int64'}, execution_count: 14, metadata: {}, output_type: execute_result}]},
    {execution_count: 18, outputs: [{data: {text/plain: 'region  pass
  
              A       P       31013
  
              B       P       36202
  
              C       P       26681
  
              D       P       22080
  
              E       P       20880
  
              F       P       22216
  
              Name: pass, dtype: int64'}, execution_count: 18, metadata: {}, output_type: execute_result}]},
    {execution_count: null, outputs: []}, {execution_count: 7, outputs: [{data: {text/html: "<div>\n\
              <style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align:\
              \ middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align:\
              \ top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n\
              \    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n\
              \    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>fl</th>\n\
              \      <th>math</th>\n      <th>roll_number</th>\n      <th>sci</th>\n\
              \      <th>sl</th>\n      <th>ss</th>\n      <th>total</th>\n    </tr>\n\
              \    <tr>\n      <th>region</th>\n      <th></th>\n      <th></th>\n \
              \     <th></th>\n      <th></th>\n      <th></th>\n      <th></th>\n \
              \     <th></th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>A</th>\n\
              \      <td>54.156497</td>\n      <td>63.149551</td>\n      <td>105609.081674</td>\n\
              \      <td>50.432756</td>\n      <td>73.686377</td>\n      <td>62.453164</td>\n\
              \      <td>303.789099</td>\n    </tr>\n    <tr>\n      <th>B</th>\n  \
              \    <td>55.239836</td>\n      <td>63.638822</td>\n      <td>105746.142280</td>\n\
              \      <td>52.747653</td>\n      <td>74.455093</td>\n      <td>64.448891</td>\n\
              \      <td>310.482572</td>\n    </tr>\n    <tr>\n      <th>C</th>\n  \
              \    <td>54.080346</td>\n      <td>62.733572</td>\n      <td>124099.117879</td>\n\
              \      <td>50.344222</td>\n      <td>74.076716</td>\n      <td>64.647672</td>\n\
              \      <td>305.822393</td>\n    </tr>\n    <tr>\n      <th>D</th>\n  \
              \    <td>52.968296</td>\n      <td>62.589993</td>\n      <td>86303.811307</td>\n\
              \      <td>51.186670</td>\n      <td>73.665423</td>\n      <td>64.119590</td>\n\
              \      <td>304.428818</td>\n    </tr>\n    <tr>\n      <th>E</th>\n  \
              \    <td>52.085389</td>\n      <td>62.724153</td>\n      <td>97040.595682</td>\n\
              \      <td>48.743782</td>\n      <td>72.772392</td>\n      <td>61.520147</td>\n\
              \      <td>297.731881</td>\n    </tr>\n    <tr>\n      <th>F</th>\n  \
              \    <td>53.396229</td>\n      <td>61.694766</td>\n      <td>105989.116946</td>\n\
              \      <td>49.735712</td>\n      <td>72.041425</td>\n      <td>61.167210</td>\n\
              \      <td>297.852010</td>\n    </tr>\n  </tbody>\n</table>\n</div>",
            text/plain: "               fl       math    roll_number        sci    \
              \     sl         ss  \\\nregion                                      \
              \                                   \nA       54.156497  63.149551  105609.081674\
              \  50.432756  73.686377  62.453164   \nB       55.239836  63.638822  105746.142280\
              \  52.747653  74.455093  64.448891   \nC       54.080346  62.733572  124099.117879\
              \  50.344222  74.076716  64.647672   \nD       52.968296  62.589993  \
              \ 86303.811307  51.186670  73.665423  64.119590   \nE       52.085389\
              \  62.724153   97040.595682  48.743782  72.772392  61.520147   \nF   \
              \    53.396229  61.694766  105989.116946  49.735712  72.041425  61.167210\
              \   \n\n             total  \nregion              \nA       303.789099\
              \  \nB       310.482572  \nC       305.822393  \nD       304.428818  \n\
              E       297.731881  \nF       297.852010  "}, execution_count: 7, metadata: {},
          output_type: execute_result}]}, {execution_count: 8, outputs: [{data: {text/html: "<div>\n\
              <style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align:\
              \ middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align:\
              \ top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n\
              \    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n\
              \    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>extra</th>\n\
              \      <th>fl</th>\n      <th>math</th>\n      <th>roll_number</th>\n\
              \      <th>sci</th>\n      <th>sl</th>\n      <th>ss</th>\n      <th>total</th>\n\
              \    </tr>\n    <tr>\n      <th>region</th>\n      <th></th>\n      <th></th>\n\
              \      <th></th>\n      <th></th>\n      <th></th>\n      <th></th>\n\
              \      <th></th>\n      <th></th>\n    </tr>\n  </thead>\n  <tbody>\n\
              \    <tr>\n      <th>A</th>\n      <td>0.0</td>\n      <td>1970430.0</td>\n\
              \      <td>2297949.0</td>\n      <td>3844276182</td>\n      <td>1835248.0</td>\n\
              \      <td>2681742.0</td>\n      <td>2272858.0</td>\n      <td>11058227.0</td>\n\
              \    </tr>\n    <tr>\n      <th>B</th>\n      <td>0.0</td>\n      <td>2282731.0</td>\n\
              \      <td>2630638.0</td>\n      <td>4371651268</td>\n      <td>2180377.0</td>\n\
              \      <td>3078048.0</td>\n      <td>2663866.0</td>\n      <td>12835660.0</td>\n\
              \    </tr>\n    <tr>\n      <th>C</th>\n      <td>0.0</td>\n      <td>1689470.0</td>\n\
              \      <td>1960926.0</td>\n      <td>3879462524</td>\n      <td>1573559.0</td>\n\
              \      <td>2315490.0</td>\n      <td>2020563.0</td>\n      <td>9560008.0</td>\n\
              \    </tr>\n    <tr>\n      <th>D</th>\n      <td>0.0</td>\n      <td>1348255.0</td>\n\
              \      <td>1593729.0</td>\n      <td>2198158074</td>\n      <td>1303315.0</td>\n\
              \      <td>1875890.0</td>\n      <td>1632613.0</td>\n      <td>7753802.0</td>\n\
              \    </tr>\n    <tr>\n      <th>E</th>\n      <td>0.0</td>\n      <td>1290103.0</td>\n\
              \      <td>1553740.0</td>\n      <td>2404665961</td>\n      <td>1207286.0</td>\n\
              \      <td>1802936.0</td>\n      <td>1523731.0</td>\n      <td>7377796.0</td>\n\
              \    </tr>\n    <tr>\n      <th>F</th>\n      <td>0.0</td>\n      <td>1407578.0</td>\n\
              \      <td>1629112.0</td>\n      <td>2799596535</td>\n      <td>1313172.0</td>\n\
              \      <td>1902542.0</td>\n      <td>1615059.0</td>\n      <td>7867463.0</td>\n\
              \    </tr>\n  </tbody>\n</table>\n</div>", text/plain: "        extra\
              \         fl       math  roll_number        sci         sl  \\\nregion\
              \                                                                   \n\
              A         0.0  1970430.0  2297949.0   3844276182  1835248.0  2681742.0\
              \   \nB         0.0  2282731.0  2630638.0   4371651268  2180377.0  3078048.0\
              \   \nC         0.0  1689470.0  1960926.0   3879462524  1573559.0  2315490.0\
              \   \nD         0.0  1348255.0  1593729.0   2198158074  1303315.0  1875890.0\
              \   \nE         0.0  1290103.0  1553740.0   2404665961  1207286.0  1802936.0\
              \   \nF         0.0  1407578.0  1629112.0   2799596535  1313172.0  1902542.0\
              \   \n\n               ss       total  \nregion                      \
              \   \nA       2272858.0  11058227.0  \nB       2663866.0  12835660.0 \
              \ \nC       2020563.0   9560008.0  \nD       1632613.0   7753802.0  \n\
              E       1523731.0   7377796.0  \nF       1615059.0   7867463.0  "}, execution_count: 8,
          metadata: {}, output_type: execute_result}]}, {execution_count: null, outputs: []}]