1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
|
======================
QuerySet API reference
======================
.. currentmodule:: django.db.models.QuerySet
This document describes the details of the ``QuerySet`` API. It builds on the
material presented in the :doc:`model </topics/db/models>` and :doc:`database
query </topics/db/queries>` guides, so you'll probably want to read and
understand those documents before reading this one.
Throughout this reference we'll use the :ref:`example Weblog models
<queryset-model-example>` presented in the :doc:`database query guide
</topics/db/queries>`.
.. _when-querysets-are-evaluated:
When QuerySets are evaluated
============================
Internally, a ``QuerySet`` can be constructed, filtered, sliced, and generally
passed around without actually hitting the database. No database activity
actually occurs until you do something to evaluate the queryset.
You can evaluate a ``QuerySet`` in the following ways:
* **Iteration.** A ``QuerySet`` is iterable, and it executes its database
query the first time you iterate over it. For example, this will print
the headline of all entries in the database::
for e in Entry.objects.all():
print e.headline
* **Slicing.** As explained in :ref:`limiting-querysets`, a ``QuerySet`` can
be sliced, using Python's array-slicing syntax. Usually slicing a
``QuerySet`` returns another (unevaluated) ``QuerySet``, but Django will
execute the database query if you use the "step" parameter of slice
syntax.
* **Pickling/Caching.** See the following section for details of what
is involved when `pickling QuerySets`_. The important thing for the
purposes of this section is that the results are read from the database.
* **repr().** A ``QuerySet`` is evaluated when you call ``repr()`` on it.
This is for convenience in the Python interactive interpreter, so you can
immediately see your results when using the API interactively.
* **len().** A ``QuerySet`` is evaluated when you call ``len()`` on it.
This, as you might expect, returns the length of the result list.
Note: *Don't* use ``len()`` on ``QuerySet``\s if all you want to do is
determine the number of records in the set. It's much more efficient to
handle a count at the database level, using SQL's ``SELECT COUNT(*)``,
and Django provides a ``count()`` method for precisely this reason. See
``count()`` below.
* **list().** Force evaluation of a ``QuerySet`` by calling ``list()`` on
it. For example::
entry_list = list(Entry.objects.all())
Be warned, though, that this could have a large memory overhead, because
Django will load each element of the list into memory. In contrast,
iterating over a ``QuerySet`` will take advantage of your database to
load data and instantiate objects only as you need them.
* **bool().** Testing a ``QuerySet`` in a boolean context, such as using
``bool()``, ``or``, ``and`` or an ``if`` statement, will cause the query
to be executed. If there is at least one result, the ``QuerySet`` is
``True``, otherwise ``False``. For example::
if Entry.objects.filter(headline="Test"):
print "There is at least one Entry with the headline Test"
Note: *Don't* use this if all you want to do is determine if at least one
result exists, and don't need the actual objects. It's more efficient to
use ``exists()`` (see below).
.. _pickling QuerySets:
Pickling QuerySets
------------------
If you pickle_ a ``QuerySet``, this will force all the results to be loaded
into memory prior to pickling. Pickling is usually used as a precursor to
caching and when the cached queryset is reloaded, you want the results to
already be present and ready for use (reading from the database can take some
time, defeating the purpose of caching). This means that when you unpickle a
``QuerySet``, it contains the results at the moment it was pickled, rather
than the results that are currently in the database.
If you only want to pickle the necessary information to recreate the
``QuerySet`` from the database at a later time, pickle the ``query`` attribute
of the ``QuerySet``. You can then recreate the original ``QuerySet`` (without
any results loaded) using some code like this::
>>> import pickle
>>> query = pickle.loads(s) # Assuming 's' is the pickled string.
>>> qs = MyModel.objects.all()
>>> qs.query = query # Restore the original 'query'.
The ``query`` attribute is an opaque object. It represents the internals of
the query construction and is not part of the public API. However, it is safe
(and fully supported) to pickle and unpickle the attribute's contents as
described here.
.. admonition:: You can't share pickles between versions
Pickles of QuerySets are only valid for the version of Django that
was used to generate them. If you generate a pickle using Django
version N, there is no guarantee that pickle will be readable with
Django version N+1. Pickles should not be used as part of a long-term
archival strategy.
.. _pickle: http://docs.python.org/library/pickle.html
.. _queryset-api:
QuerySet API
============
Though you usually won't create one manually -- you'll go through a
:class:`Manager` -- here's the formal declaration of a ``QuerySet``:
.. class:: QuerySet([model=None])
Usually when you'll interact with a ``QuerySet`` you'll use it by :ref:`chaining
filters <chaining-filters>`. To make this work, most ``QuerySet`` methods return new querysets.
Methods that return new QuerySets
---------------------------------
Django provides a range of ``QuerySet`` refinement methods that modify either
the types of results returned by the ``QuerySet`` or the way its SQL query is
executed.
filter
~~~~~~
.. method:: filter(**kwargs)
Returns a new ``QuerySet`` containing objects that match the given lookup
parameters.
The lookup parameters (``**kwargs``) should be in the format described in
`Field lookups`_ below. Multiple parameters are joined via ``AND`` in the
underlying SQL statement.
exclude
~~~~~~~
.. method:: exclude(**kwargs)
Returns a new ``QuerySet`` containing objects that do *not* match the given
lookup parameters.
The lookup parameters (``**kwargs``) should be in the format described in
`Field lookups`_ below. Multiple parameters are joined via ``AND`` in the
underlying SQL statement, and the whole thing is enclosed in a ``NOT()``.
This example excludes all entries whose ``pub_date`` is later than 2005-1-3
AND whose ``headline`` is "Hello"::
Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3), headline='Hello')
In SQL terms, that evaluates to::
SELECT ...
WHERE NOT (pub_date > '2005-1-3' AND headline = 'Hello')
This example excludes all entries whose ``pub_date`` is later than 2005-1-3
OR whose headline is "Hello"::
Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3)).exclude(headline='Hello')
In SQL terms, that evaluates to::
SELECT ...
WHERE NOT pub_date > '2005-1-3'
AND NOT headline = 'Hello'
Note the second example is more restrictive.
annotate
~~~~~~~~
.. method:: annotate(*args, **kwargs)
.. versionadded:: 1.1
Annotates each object in the ``QuerySet`` with the provided list of
aggregate values (averages, sums, etc) that have been computed over
the objects that are related to the objects in the ``QuerySet``.
Each argument to ``annotate()`` is an annotation that will be added
to each object in the ``QuerySet`` that is returned.
The aggregation functions that are provided by Django are described
in `Aggregation Functions`_ below.
Annotations specified using keyword arguments will use the keyword as
the alias for the annotation. Anonymous arguments will have an alias
generated for them based upon the name of the aggregate function and
the model field that is being aggregated.
For example, if you were manipulating a list of blogs, you may want
to determine how many entries have been made in each blog::
>>> q = Blog.objects.annotate(Count('entry'))
# The name of the first blog
>>> q[0].name
'Blogasaurus'
# The number of entries on the first blog
>>> q[0].entry__count
42
The ``Blog`` model doesn't define an ``entry__count`` attribute by itself,
but by using a keyword argument to specify the aggregate function, you can
control the name of the annotation::
>>> q = Blog.objects.annotate(number_of_entries=Count('entry'))
# The number of entries on the first blog, using the name provided
>>> q[0].number_of_entries
42
For an in-depth discussion of aggregation, see :doc:`the topic guide on
Aggregation </topics/db/aggregation>`.
order_by
~~~~~~~~
.. method:: order_by(*fields)
By default, results returned by a ``QuerySet`` are ordered by the ordering
tuple given by the ``ordering`` option in the model's ``Meta``. You can
override this on a per-``QuerySet`` basis by using the ``order_by`` method.
Example::
Entry.objects.filter(pub_date__year=2005).order_by('-pub_date', 'headline')
The result above will be ordered by ``pub_date`` descending, then by
``headline`` ascending. The negative sign in front of ``"-pub_date"`` indicates
*descending* order. Ascending order is implied. To order randomly, use ``"?"``,
like so::
Entry.objects.order_by('?')
Note: ``order_by('?')`` queries may be expensive and slow, depending on the
database backend you're using.
To order by a field in a different model, use the same syntax as when you are
querying across model relations. That is, the name of the field, followed by a
double underscore (``__``), followed by the name of the field in the new model,
and so on for as many models as you want to join. For example::
Entry.objects.order_by('blog__name', 'headline')
If you try to order by a field that is a relation to another model, Django will
use the default ordering on the related model (or order by the related model's
primary key if there is no ``Meta.ordering`` specified. For example::
Entry.objects.order_by('blog')
...is identical to::
Entry.objects.order_by('blog__id')
...since the ``Blog`` model has no default ordering specified.
Be cautious when ordering by fields in related models if you are also using
``distinct()``. See the note in :meth:`distinct` for an explanation of how
related model ordering can change the expected results.
It is permissible to specify a multi-valued field to order the results by (for
example, a ``ManyToMany`` field). Normally this won't be a sensible thing to
do and it's really an advanced usage feature. However, if you know that your
queryset's filtering or available data implies that there will only be one
ordering piece of data for each of the main items you are selecting, the
ordering may well be exactly what you want to do. Use ordering on multi-valued
fields with care and make sure the results are what you expect.
.. versionadded:: 1.0
The syntax for ordering across related models has changed. See the `Django 0.96
documentation`_ for the old behaviour.
.. _Django 0.96 documentation: http://www.djangoproject.com/documentation/0.96/model-api/#floatfield
There's no way to specify whether ordering should be case sensitive. With
respect to case-sensitivity, Django will order results however your database
backend normally orders them.
If you don't want any ordering to be applied to a query, not even the default
ordering, call ``order_by()`` with no parameters.
.. versionadded:: 1.1
You can tell if a query is ordered or not by checking the
:attr:`QuerySet.ordered` attribute, which will be ``True`` if the
``QuerySet`` has been ordered in any way.
reverse
~~~~~~~
.. method:: reverse()
.. versionadded:: 1.0
Use the ``reverse()`` method to reverse the order in which a queryset's
elements are returned. Calling ``reverse()`` a second time restores the
ordering back to the normal direction.
To retrieve the ''last'' five items in a queryset, you could do this::
my_queryset.reverse()[:5]
Note that this is not quite the same as slicing from the end of a sequence in
Python. The above example will return the last item first, then the
penultimate item and so on. If we had a Python sequence and looked at
``seq[-5:]``, we would see the fifth-last item first. Django doesn't support
that mode of access (slicing from the end), because it's not possible to do it
efficiently in SQL.
Also, note that ``reverse()`` should generally only be called on a
``QuerySet`` which has a defined ordering (e.g., when querying against
a model which defines a default ordering, or when using
``order_by()``). If no such ordering is defined for a given
``QuerySet``, calling ``reverse()`` on it has no real effect (the
ordering was undefined prior to calling ``reverse()``, and will remain
undefined afterward).
distinct
~~~~~~~~
.. method:: distinct()
Returns a new ``QuerySet`` that uses ``SELECT DISTINCT`` in its SQL query. This
eliminates duplicate rows from the query results.
By default, a ``QuerySet`` will not eliminate duplicate rows. In practice, this
is rarely a problem, because simple queries such as ``Blog.objects.all()``
don't introduce the possibility of duplicate result rows. However, if your
query spans multiple tables, it's possible to get duplicate results when a
``QuerySet`` is evaluated. That's when you'd use ``distinct()``.
.. note::
Any fields used in an :meth:`order_by` call are included in the SQL
``SELECT`` columns. This can sometimes lead to unexpected results when
used in conjunction with ``distinct()``. If you order by fields from a
related model, those fields will be added to the selected columns and they
may make otherwise duplicate rows appear to be distinct. Since the extra
columns don't appear in the returned results (they are only there to
support ordering), it sometimes looks like non-distinct results are being
returned.
Similarly, if you use a ``values()`` query to restrict the columns
selected, the columns used in any ``order_by()`` (or default model
ordering) will still be involved and may affect uniqueness of the results.
The moral here is that if you are using ``distinct()`` be careful about
ordering by related models. Similarly, when using ``distinct()`` and
``values()`` together, be careful when ordering by fields not in the
``values()`` call.
values
~~~~~~
.. method:: values(*fields)
Returns a ``ValuesQuerySet`` -- a ``QuerySet`` that returns dictionaries when
used as an iterable, rather than model-instance objects.
Each of those dictionaries represents an object, with the keys corresponding to
the attribute names of model objects.
This example compares the dictionaries of ``values()`` with the normal model
objects::
# This list contains a Blog object.
>>> Blog.objects.filter(name__startswith='Beatles')
[<Blog: Beatles Blog>]
# This list contains a dictionary.
>>> Blog.objects.filter(name__startswith='Beatles').values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.'}]
``values()`` takes optional positional arguments, ``*fields``, which specify
field names to which the ``SELECT`` should be limited. If you specify the
fields, each dictionary will contain only the field keys/values for the fields
you specify. If you don't specify the fields, each dictionary will contain a
key and value for every field in the database table.
Example::
>>> Blog.objects.values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.'}],
>>> Blog.objects.values('id', 'name')
[{'id': 1, 'name': 'Beatles Blog'}]
A couple of subtleties that are worth mentioning:
* The ``values()`` method does not return anything for
:class:`~django.db.models.ManyToManyField` attributes and will raise an
error if you try to pass in this type of field to it.
* If you have a field called ``foo`` that is a
:class:`~django.db.models.ForeignKey`, the default ``values()`` call
will return a dictionary key called ``foo_id``, since this is the name
of the hidden model attribute that stores the actual value (the ``foo``
attribute refers to the related model). When you are calling
``values()`` and passing in field names, you can pass in either ``foo``
or ``foo_id`` and you will get back the same thing (the dictionary key
will match the field name you passed in).
For example::
>>> Entry.objects.values()
[{'blog_id': 1, 'headline': u'First Entry', ...}, ...]
>>> Entry.objects.values('blog')
[{'blog': 1}, ...]
>>> Entry.objects.values('blog_id')
[{'blog_id': 1}, ...]
* When using ``values()`` together with ``distinct()``, be aware that
ordering can affect the results. See the note in :meth:`distinct` for
details.
* If you use a ``values()`` clause after an ``extra()`` clause,
any fields defined by a ``select`` argument in the ``extra()``
must be explicitly included in the ``values()`` clause. However,
if the ``extra()`` clause is used after the ``values()``, the
fields added by the select will be included automatically.
.. versionadded:: 1.0
Previously, it was not possible to pass ``blog_id`` to ``values()`` in the above
example, only ``blog``.
A ``ValuesQuerySet`` is useful when you know you're only going to need values
from a small number of the available fields and you won't need the
functionality of a model instance object. It's more efficient to select only
the fields you need to use.
Finally, note a ``ValuesQuerySet`` is a subclass of ``QuerySet``, so it has all
methods of ``QuerySet``. You can call ``filter()`` on it, or ``order_by()``, or
whatever. Yes, that means these two calls are identical::
Blog.objects.values().order_by('id')
Blog.objects.order_by('id').values()
The people who made Django prefer to put all the SQL-affecting methods first,
followed (optionally) by any output-affecting methods (such as ``values()``),
but it doesn't really matter. This is your chance to really flaunt your
individualism.
values_list
~~~~~~~~~~~
.. method:: values_list(*fields)
.. versionadded:: 1.0
This is similar to ``values()`` except that instead of returning dictionaries,
it returns tuples when iterated over. Each tuple contains the value from the
respective field passed into the ``values_list()`` call -- so the first item is
the first field, etc. For example::
>>> Entry.objects.values_list('id', 'headline')
[(1, u'First entry'), ...]
If you only pass in a single field, you can also pass in the ``flat``
parameter. If ``True``, this will mean the returned results are single values,
rather than one-tuples. An example should make the difference clearer::
>>> Entry.objects.values_list('id').order_by('id')
[(1,), (2,), (3,), ...]
>>> Entry.objects.values_list('id', flat=True).order_by('id')
[1, 2, 3, ...]
It is an error to pass in ``flat`` when there is more than one field.
If you don't pass any values to ``values_list()``, it will return all the
fields in the model, in the order they were declared.
dates
~~~~~
.. method:: dates(field, kind, order='ASC')
Returns a ``DateQuerySet`` -- a ``QuerySet`` that evaluates to a list of
``datetime.datetime`` objects representing all available dates of a particular
kind within the contents of the ``QuerySet``.
``field`` should be the name of a ``DateField`` or ``DateTimeField`` of your
model.
``kind`` should be either ``"year"``, ``"month"`` or ``"day"``. Each
``datetime.datetime`` object in the result list is "truncated" to the given
``type``.
* ``"year"`` returns a list of all distinct year values for the field.
* ``"month"`` returns a list of all distinct year/month values for the field.
* ``"day"`` returns a list of all distinct year/month/day values for the field.
``order``, which defaults to ``'ASC'``, should be either ``'ASC'`` or
``'DESC'``. This specifies how to order the results.
Examples::
>>> Entry.objects.dates('pub_date', 'year')
[datetime.datetime(2005, 1, 1)]
>>> Entry.objects.dates('pub_date', 'month')
[datetime.datetime(2005, 2, 1), datetime.datetime(2005, 3, 1)]
>>> Entry.objects.dates('pub_date', 'day')
[datetime.datetime(2005, 2, 20), datetime.datetime(2005, 3, 20)]
>>> Entry.objects.dates('pub_date', 'day', order='DESC')
[datetime.datetime(2005, 3, 20), datetime.datetime(2005, 2, 20)]
>>> Entry.objects.filter(headline__contains='Lennon').dates('pub_date', 'day')
[datetime.datetime(2005, 3, 20)]
none
~~~~
.. method:: none()
.. versionadded:: 1.0
Returns an ``EmptyQuerySet`` -- a ``QuerySet`` that always evaluates to
an empty list. This can be used in cases where you know that you should
return an empty result set and your caller is expecting a ``QuerySet``
object (instead of returning an empty list, for example.)
Examples::
>>> Entry.objects.none()
[]
all
~~~
.. method:: all()
.. versionadded:: 1.0
Returns a *copy* of the current ``QuerySet`` (or ``QuerySet`` subclass you
pass in). This can be useful in some situations where you might want to pass
in either a model manager or a ``QuerySet`` and do further filtering on the
result. You can safely call ``all()`` on either object and then you'll
definitely have a ``QuerySet`` to work with.
.. _select-related:
select_related
~~~~~~~~~~~~~~
.. method:: select_related()
Returns a ``QuerySet`` that will automatically "follow" foreign-key
relationships, selecting that additional related-object data when it executes
its query. This is a performance booster which results in (sometimes much)
larger queries but means later use of foreign-key relationships won't require
database queries.
The following examples illustrate the difference between plain lookups and
``select_related()`` lookups. Here's standard lookup::
# Hits the database.
e = Entry.objects.get(id=5)
# Hits the database again to get the related Blog object.
b = e.blog
And here's ``select_related`` lookup::
# Hits the database.
e = Entry.objects.select_related().get(id=5)
# Doesn't hit the database, because e.blog has been prepopulated
# in the previous query.
b = e.blog
``select_related()`` follows foreign keys as far as possible. If you have the
following models::
class City(models.Model):
# ...
class Person(models.Model):
# ...
hometown = models.ForeignKey(City)
class Book(models.Model):
# ...
author = models.ForeignKey(Person)
...then a call to ``Book.objects.select_related().get(id=4)`` will cache the
related ``Person`` *and* the related ``City``::
b = Book.objects.select_related().get(id=4)
p = b.author # Doesn't hit the database.
c = p.hometown # Doesn't hit the database.
b = Book.objects.get(id=4) # No select_related() in this example.
p = b.author # Hits the database.
c = p.hometown # Hits the database.
Note that, by default, ``select_related()`` does not follow foreign keys that
have ``null=True``.
Usually, using ``select_related()`` can vastly improve performance because your
app can avoid many database calls. However, in situations with deeply nested
sets of relationships ``select_related()`` can sometimes end up following "too
many" relations, and can generate queries so large that they end up being slow.
In these situations, you can use the ``depth`` argument to ``select_related()``
to control how many "levels" of relations ``select_related()`` will actually
follow::
b = Book.objects.select_related(depth=1).get(id=4)
p = b.author # Doesn't hit the database.
c = p.hometown # Requires a database call.
Sometimes you only want to access specific models that are related to your root
model, not all of the related models. In these cases, you can pass the related
field names to ``select_related()`` and it will only follow those relations.
You can even do this for models that are more than one relation away by
separating the field names with double underscores, just as for filters. For
example, if you have this model::
class Room(models.Model):
# ...
building = models.ForeignKey(...)
class Group(models.Model):
# ...
teacher = models.ForeignKey(...)
room = models.ForeignKey(Room)
subject = models.ForeignKey(...)
...and you only needed to work with the ``room`` and ``subject`` attributes,
you could write this::
g = Group.objects.select_related('room', 'subject')
This is also valid::
g = Group.objects.select_related('room__building', 'subject')
...and would also pull in the ``building`` relation.
You can refer to any ``ForeignKey`` or ``OneToOneField`` relation in
the list of fields passed to ``select_related``. Ths includes foreign
keys that have ``null=True`` (unlike the default ``select_related()``
call). It's an error to use both a list of fields and the ``depth``
parameter in the same ``select_related()`` call, since they are
conflicting options.
.. versionadded:: 1.0
Both the ``depth`` argument and the ability to specify field names in the call
to ``select_related()`` are new in Django version 1.0.
.. versionchanged:: 1.2
You can also refer to the reverse direction of a ``OneToOneFields`` in
the list of fields passed to ``select_related`` -- that is, you can traverse
a ``OneToOneField`` back to the object on which the field is defined. Instead
of specifying the field name, use the ``related_name`` for the field on the
related object.
``OneToOneFields`` will not be traversed in the reverse direction if you
are performing a depth-based ``select_related``.
extra
~~~~~
.. method:: extra(select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
Sometimes, the Django query syntax by itself can't easily express a complex
``WHERE`` clause. For these edge cases, Django provides the ``extra()``
``QuerySet`` modifier -- a hook for injecting specific clauses into the SQL
generated by a ``QuerySet``.
By definition, these extra lookups may not be portable to different database
engines (because you're explicitly writing SQL code) and violate the DRY
principle, so you should avoid them if possible.
Specify one or more of ``params``, ``select``, ``where`` or ``tables``. None
of the arguments is required, but you should use at least one of them.
* ``select``
The ``select`` argument lets you put extra fields in the ``SELECT`` clause.
It should be a dictionary mapping attribute names to SQL clauses to use to
calculate that attribute.
Example::
Entry.objects.extra(select={'is_recent': "pub_date > '2006-01-01'"})
As a result, each ``Entry`` object will have an extra attribute,
``is_recent``, a boolean representing whether the entry's ``pub_date`` is
greater than Jan. 1, 2006.
Django inserts the given SQL snippet directly into the ``SELECT``
statement, so the resulting SQL of the above example would be something
like::
SELECT blog_entry.*, (pub_date > '2006-01-01') AS is_recent
FROM blog_entry;
The next example is more advanced; it does a subquery to give each
resulting ``Blog`` object an ``entry_count`` attribute, an integer count
of associated ``Entry`` objects::
Blog.objects.extra(
select={
'entry_count': 'SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id'
},
)
(In this particular case, we're exploiting the fact that the query will
already contain the ``blog_blog`` table in its ``FROM`` clause.)
The resulting SQL of the above example would be::
SELECT blog_blog.*, (SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id) AS entry_count
FROM blog_blog;
Note that the parenthesis required by most database engines around
subqueries are not required in Django's ``select`` clauses. Also note that
some database backends, such as some MySQL versions, don't support
subqueries.
.. versionadded:: 1.0
In some rare cases, you might wish to pass parameters to the SQL fragments
in ``extra(select=...)``. For this purpose, use the ``select_params``
parameter. Since ``select_params`` is a sequence and the ``select``
attribute is a dictionary, some care is required so that the parameters
are matched up correctly with the extra select pieces. In this situation,
you should use a ``django.utils.datastructures.SortedDict`` for the
``select`` value, not just a normal Python dictionary.
This will work, for example::
Blog.objects.extra(
select=SortedDict([('a', '%s'), ('b', '%s')]),
select_params=('one', 'two'))
The only thing to be careful about when using select parameters in
``extra()`` is to avoid using the substring ``"%%s"`` (that's *two*
percent characters before the ``s``) in the select strings. Django's
tracking of parameters looks for ``%s`` and an escaped ``%`` character
like this isn't detected. That will lead to incorrect results.
* ``where`` / ``tables``
You can define explicit SQL ``WHERE`` clauses -- perhaps to perform
non-explicit joins -- by using ``where``. You can manually add tables to
the SQL ``FROM`` clause by using ``tables``.
``where`` and ``tables`` both take a list of strings. All ``where``
parameters are "AND"ed to any other search criteria.
Example::
Entry.objects.extra(where=['id IN (3, 4, 5, 20)'])
...translates (roughly) into the following SQL::
SELECT * FROM blog_entry WHERE id IN (3, 4, 5, 20);
Be careful when using the ``tables`` parameter if you're specifying
tables that are already used in the query. When you add extra tables
via the ``tables`` parameter, Django assumes you want that table included
an extra time, if it is already included. That creates a problem,
since the table name will then be given an alias. If a table appears
multiple times in an SQL statement, the second and subsequent occurrences
must use aliases so the database can tell them apart. If you're
referring to the extra table you added in the extra ``where`` parameter
this is going to cause errors.
Normally you'll only be adding extra tables that don't already appear in
the query. However, if the case outlined above does occur, there are a few
solutions. First, see if you can get by without including the extra table
and use the one already in the query. If that isn't possible, put your
``extra()`` call at the front of the queryset construction so that your
table is the first use of that table. Finally, if all else fails, look at
the query produced and rewrite your ``where`` addition to use the alias
given to your extra table. The alias will be the same each time you
construct the queryset in the same way, so you can rely upon the alias
name to not change.
* ``order_by``
If you need to order the resulting queryset using some of the new fields
or tables you have included via ``extra()`` use the ``order_by`` parameter
to ``extra()`` and pass in a sequence of strings. These strings should
either be model fields (as in the normal ``order_by()`` method on
querysets), of the form ``table_name.column_name`` or an alias for a column
that you specified in the ``select`` parameter to ``extra()``.
For example::
q = Entry.objects.extra(select={'is_recent': "pub_date > '2006-01-01'"})
q = q.extra(order_by = ['-is_recent'])
This would sort all the items for which ``is_recent`` is true to the front
of the result set (``True`` sorts before ``False`` in a descending
ordering).
This shows, by the way, that you can make multiple calls to
``extra()`` and it will behave as you expect (adding new constraints each
time).
* ``params``
The ``where`` parameter described above may use standard Python database
string placeholders -- ``'%s'`` to indicate parameters the database engine
should automatically quote. The ``params`` argument is a list of any extra
parameters to be substituted.
Example::
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
Always use ``params`` instead of embedding values directly into ``where``
because ``params`` will ensure values are quoted correctly according to
your particular backend. (For example, quotes will be escaped correctly.)
Bad::
Entry.objects.extra(where=["headline='Lennon'"])
Good::
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
defer
~~~~~
.. method:: defer(*fields)
.. versionadded:: 1.1
In some complex data-modeling situations, your models might contain a lot of
fields, some of which could contain a lot of data (for example, text fields),
or require expensive processing to convert them to Python objects. If you are
using the results of a queryset in some situation where you know you don't
need those particular fields, you can tell Django not to retrieve them from
the database.
This is done by passing the names of the fields to not load to ``defer()``::
Entry.objects.defer("headline", "body")
A queryset that has deferred fields will still return model instances. Each
deferred field will be retrieved from the database if you access that field
(one at a time, not all the deferred fields at once).
You can make multiple calls to ``defer()``. Each call adds new fields to the
deferred set::
# Defers both the body and headline fields.
Entry.objects.defer("body").filter(rating=5).defer("headline")
The order in which fields are added to the deferred set does not matter.
Calling ``defer()`` with a field name that has already been deferred is
harmless (the field will still be deferred).
You can defer loading of fields in related models (if the related models are
loading via ``select_related()``) by using the standard double-underscore
notation to separate related fields::
Blog.objects.select_related().defer("entry__headline", "entry__body")
If you want to clear the set of deferred fields, pass ``None`` as a parameter
to ``defer()``::
# Load all fields immediately.
my_queryset.defer(None)
Some fields in a model won't be deferred, even if you ask for them. You can
never defer the loading of the primary key. If you are using
``select_related()`` to retrieve other models at the same time you shouldn't
defer the loading of the field that connects from the primary model to the
related one (at the moment, that doesn't raise an error, but it will
eventually).
.. note::
The ``defer()`` method (and its cousin, ``only()``, below) are only for
advanced use-cases. They provide an optimization for when you have
analyzed your queries closely and understand *exactly* what information
you need and have measured that the difference between returning the
fields you need and the full set of fields for the model will be
significant. When you are initially developing your applications, don't
bother using ``defer()``; leave it until your query construction has
settled down and you understand where the hot-points are.
only
~~~~
.. method:: only(*fields)
.. versionadded:: 1.1
The ``only()`` method is more or less the opposite of ``defer()``. You
call it with the fields that should *not* be deferred when retrieving a model.
If you have a model where almost all the fields need to be deferred, using
``only()`` to specify the complementary set of fields could result in simpler
code.
If you have a model with fields ``name``, ``age`` and ``biography``, the
following two querysets are the same, in terms of deferred fields::
Person.objects.defer("age", "biography")
Person.objects.only("name")
Whenever you call ``only()`` it *replaces* the set of fields to load
immediately. The method's name is mnemonic: **only** those fields are loaded
immediately; the remainder are deferred. Thus, successive calls to ``only()``
result in only the final fields being considered::
# This will defer all fields except the headline.
Entry.objects.only("body", "rating").only("headline")
Since ``defer()`` acts incrementally (adding fields to the deferred list), you
can combine calls to ``only()`` and ``defer()`` and things will behave
logically::
# Final result is that everything except "headline" is deferred.
Entry.objects.only("headline", "body").defer("body")
# Final result loads headline and body immediately (only() replaces any
# existing set of fields).
Entry.objects.defer("body").only("headline", "body")
using
~~~~~
.. method:: using(alias)
.. versionadded:: 1.2
This method is for controlling which database the ``QuerySet`` will be
evaluated against if you are using more than one database. The only argument
this method takes is the alias of a database, as defined in
:setting:`DATABASES`.
For example::
# queries the database with the 'default' alias.
>>> Entry.objects.all()
# queries the database with the 'backup' alias
>>> Entry.objects.using('backup')
Methods that do not return QuerySets
------------------------------------
The following ``QuerySet`` methods evaluate the ``QuerySet`` and return
something *other than* a ``QuerySet``.
These methods do not use a cache (see :ref:`caching-and-querysets`). Rather,
they query the database each time they're called.
get
~~~
.. method:: get(**kwargs)
Returns the object matching the given lookup parameters, which should be in
the format described in `Field lookups`_.
``get()`` raises ``MultipleObjectsReturned`` if more than one object was
found. The ``MultipleObjectsReturned`` exception is an attribute of the model
class.
``get()`` raises a ``DoesNotExist`` exception if an object wasn't found for
the given parameters. This exception is also an attribute of the model class.
Example::
Entry.objects.get(id='foo') # raises Entry.DoesNotExist
The ``DoesNotExist`` exception inherits from
``django.core.exceptions.ObjectDoesNotExist``, so you can target multiple
``DoesNotExist`` exceptions. Example::
from django.core.exceptions import ObjectDoesNotExist
try:
e = Entry.objects.get(id=3)
b = Blog.objects.get(id=1)
except ObjectDoesNotExist:
print "Either the entry or blog doesn't exist."
create
~~~~~~
.. method:: create(**kwargs)
A convenience method for creating an object and saving it all in one step. Thus::
p = Person.objects.create(first_name="Bruce", last_name="Springsteen")
and::
p = Person(first_name="Bruce", last_name="Springsteen")
p.save(force_insert=True)
are equivalent.
The :ref:`force_insert <ref-models-force-insert>` parameter is documented
elsewhere, but all it means is that a new object will always be created.
Normally you won't need to worry about this. However, if your model contains a
manual primary key value that you set and if that value already exists in the
database, a call to ``create()`` will fail with an :exc:`IntegrityError` since
primary keys must be unique. So remember to be prepared to handle the exception
if you are using manual primary keys.
get_or_create
~~~~~~~~~~~~~
.. method:: get_or_create(**kwargs)
A convenience method for looking up an object with the given kwargs, creating
one if necessary.
Returns a tuple of ``(object, created)``, where ``object`` is the retrieved or
created object and ``created`` is a boolean specifying whether a new object was
created.
This is meant as a shortcut to boilerplatish code and is mostly useful for
data-import scripts. For example::
try:
obj = Person.objects.get(first_name='John', last_name='Lennon')
except Person.DoesNotExist:
obj = Person(first_name='John', last_name='Lennon', birthday=date(1940, 10, 9))
obj.save()
This pattern gets quite unwieldy as the number of fields in a model goes up.
The above example can be rewritten using ``get_or_create()`` like so::
obj, created = Person.objects.get_or_create(first_name='John', last_name='Lennon',
defaults={'birthday': date(1940, 10, 9)})
Any keyword arguments passed to ``get_or_create()`` -- *except* an optional one
called ``defaults`` -- will be used in a ``get()`` call. If an object is found,
``get_or_create()`` returns a tuple of that object and ``False``. If an object
is *not* found, ``get_or_create()`` will instantiate and save a new object,
returning a tuple of the new object and ``True``. The new object will be
created roughly according to this algorithm::
defaults = kwargs.pop('defaults', {})
params = dict([(k, v) for k, v in kwargs.items() if '__' not in k])
params.update(defaults)
obj = self.model(**params)
obj.save()
In English, that means start with any non-``'defaults'`` keyword argument that
doesn't contain a double underscore (which would indicate a non-exact lookup).
Then add the contents of ``defaults``, overriding any keys if necessary, and
use the result as the keyword arguments to the model class. As hinted at
above, this is a simplification of the algorithm that is used, but it contains
all the pertinent details. The internal implementation has some more
error-checking than this and handles some extra edge-conditions; if you're
interested, read the code.
If you have a field named ``defaults`` and want to use it as an exact lookup in
``get_or_create()``, just use ``'defaults__exact'``, like so::
Foo.objects.get_or_create(defaults__exact='bar', defaults={'defaults': 'baz'})
The ``get_or_create()`` method has similar error behaviour to ``create()``
when you are using manually specified primary keys. If an object needs to be
created and the key already exists in the database, an ``IntegrityError`` will
be raised.
Finally, a word on using ``get_or_create()`` in Django views. As mentioned
earlier, ``get_or_create()`` is mostly useful in scripts that need to parse
data and create new records if existing ones aren't available. But if you need
to use ``get_or_create()`` in a view, please make sure to use it only in
``POST`` requests unless you have a good reason not to. ``GET`` requests
shouldn't have any effect on data; use ``POST`` whenever a request to a page
has a side effect on your data. For more, see `Safe methods`_ in the HTTP spec.
.. _Safe methods: http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
count
~~~~~
.. method:: count()
Returns an integer representing the number of objects in the database matching
the ``QuerySet``. ``count()`` never raises exceptions.
Example::
# Returns the total number of entries in the database.
Entry.objects.count()
# Returns the number of entries whose headline contains 'Lennon'
Entry.objects.filter(headline__contains='Lennon').count()
``count()`` performs a ``SELECT COUNT(*)`` behind the scenes, so you should
always use ``count()`` rather than loading all of the record into Python
objects and calling ``len()`` on the result (unless you need to load the
objects into memory anyway, in which case ``len()`` will be faster).
Depending on which database you're using (e.g. PostgreSQL vs. MySQL),
``count()`` may return a long integer instead of a normal Python integer. This
is an underlying implementation quirk that shouldn't pose any real-world
problems.
in_bulk
~~~~~~~
.. method:: in_bulk(id_list)
Takes a list of primary-key values and returns a dictionary mapping each
primary-key value to an instance of the object with the given ID.
Example::
>>> Blog.objects.in_bulk([1])
{1: <Blog: Beatles Blog>}
>>> Blog.objects.in_bulk([1, 2])
{1: <Blog: Beatles Blog>, 2: <Blog: Cheddar Talk>}
>>> Blog.objects.in_bulk([])
{}
If you pass ``in_bulk()`` an empty list, you'll get an empty dictionary.
iterator
~~~~~~~~
.. method:: iterator()
Evaluates the ``QuerySet`` (by performing the query) and returns an
`iterator`_ over the results. A ``QuerySet`` typically caches its
results internally so that repeated evaluations do not result in
additional queries; ``iterator()`` will instead read results directly,
without doing any caching at the ``QuerySet`` level. For a
``QuerySet`` which returns a large number of objects, this often
results in better performance and a significant reduction in memory
Note that using ``iterator()`` on a ``QuerySet`` which has already
been evaluated will force it to evaluate again, repeating the query.
.. _iterator: http://www.python.org/dev/peps/pep-0234/
latest
~~~~~~
.. method:: latest(field_name=None)
Returns the latest object in the table, by date, using the ``field_name``
provided as the date field.
This example returns the latest ``Entry`` in the table, according to the
``pub_date`` field::
Entry.objects.latest('pub_date')
If your model's ``Meta`` specifies ``get_latest_by``, you can leave off the
``field_name`` argument to ``latest()``. Django will use the field specified in
``get_latest_by`` by default.
Like ``get()``, ``latest()`` raises ``DoesNotExist`` if an object doesn't
exist with the given parameters.
Note ``latest()`` exists purely for convenience and readability.
aggregate
~~~~~~~~~
.. method:: aggregate(*args, **kwargs)
.. versionadded:: 1.1
Returns a dictionary of aggregate values (averages, sums, etc) calculated
over the ``QuerySet``. Each argument to ``aggregate()`` specifies
a value that will be included in the dictionary that is returned.
The aggregation functions that are provided by Django are described
in `Aggregation Functions`_ below.
Aggregates specified using keyword arguments will use the keyword as
the name for the annotation. Anonymous arguments will have an name
generated for them based upon the name of the aggregate function and
the model field that is being aggregated.
For example, if you were manipulating blog entries, you may want to know
the number of authors that have contributed blog entries::
>>> q = Blog.objects.aggregate(Count('entry'))
{'entry__count': 16}
By using a keyword argument to specify the aggregate function, you can
control the name of the aggregation value that is returned::
>>> q = Blog.objects.aggregate(number_of_entries=Count('entry'))
{'number_of_entries': 16}
For an in-depth discussion of aggregation, see :doc:`the topic guide on
Aggregation </topics/db/aggregation>`.
exists
~~~~~~
.. method:: exists()
.. versionadded:: 1.2
Returns ``True`` if the :class:`QuerySet` contains any results, and ``False``
if not. This tries to perform the query in the simplest and fastest way
possible, but it *does* execute nearly the same query. This means that calling
:meth:`QuerySet.exists()` is faster than ``bool(some_query_set)``, but not by
a large degree. If ``some_query_set`` has not yet been evaluated, but you know
that it will be at some point, then using ``some_query_set.exists()`` will do
more overall work (an additional query) than simply using
``bool(some_query_set)``.
update
~~~~~~
.. method:: update(**kwargs)
Performs an SQL update query for the specified fields, and returns
the number of rows affected. The ``update()`` method is applied instantly and
the only restriction on the :class:`QuerySet` that is updated is that it can
only update columns in the model's main table. Filtering based on related
fields is still possible. You cannot call ``update()`` on a
:class:`QuerySet` that has had a slice taken or can otherwise no longer be
filtered.
For example, if you wanted to update all the entries in a particular blog
to use the same headline::
>>> b = Blog.objects.get(pk=1)
# Update all the headlines belonging to this Blog.
>>> Entry.objects.select_related().filter(blog=b).update(headline='Everything is the same')
The ``update()`` method does a bulk update and does not call any ``save()``
methods on your models, nor does it emit the ``pre_save`` or ``post_save``
signals (which are a consequence of calling ``save()``).
delete
~~~~~~
.. method:: delete()
Performs an SQL delete query on all rows in the :class:`QuerySet`. The
``delete()`` is applied instantly. You cannot call ``delete()`` on a
:class:`QuerySet` that has had a slice taken or can otherwise no longer be
filtered.
For example, to delete all the entries in a particular blog::
>>> b = Blog.objects.get(pk=1)
# Delete all the entries belonging to this Blog.
>>> Entry.objects.filter(blog=b).delete()
Django emulates the SQL constraint ``ON DELETE CASCADE`` -- in other words, any
objects with foreign keys pointing at the objects to be deleted will be deleted
along with them. For example::
blogs = Blog.objects.all()
# This will delete all Blogs and all of their Entry objects.
blogs.delete()
The ``delete()`` method does a bulk delete and does not call any ``delete()``
methods on your models. It does, however, emit the
:data:`~django.db.models.signals.pre_delete` and
:data:`~django.db.models.signals.post_delete` signals for all deleted objects
(including cascaded deletions).
.. _field-lookups:
Field lookups
-------------
Field lookups are how you specify the meat of an SQL ``WHERE`` clause. They're
specified as keyword arguments to the ``QuerySet`` methods ``filter()``,
``exclude()`` and ``get()``.
For an introduction, see :ref:`field-lookups-intro`.
.. fieldlookup:: exact
exact
~~~~~
Exact match. If the value provided for comparison is ``None``, it will
be interpreted as an SQL ``NULL`` (See isnull_ for more details).
Examples::
Entry.objects.get(id__exact=14)
Entry.objects.get(id__exact=None)
SQL equivalents::
SELECT ... WHERE id = 14;
SELECT ... WHERE id IS NULL;
.. versionchanged:: 1.0
The semantics of ``id__exact=None`` have changed in Django 1.0. Previously,
it was (intentionally) converted to ``WHERE id = NULL`` at the SQL level,
which would never match anything. It has now been changed to behave the
same as ``id__isnull=True``.
.. admonition:: MySQL comparisons
In MySQL, a database table's "collation" setting determines whether
``exact`` comparisons are case-sensitive. This is a database setting, *not*
a Django setting. It's possible to configure your MySQL tables to use
case-sensitive comparisons, but some trade-offs are involved. For more
information about this, see the :ref:`collation section <mysql-collation>`
in the :doc:`databases </ref/databases>` documentation.
.. fieldlookup:: iexact
iexact
~~~~~~
Case-insensitive exact match.
Example::
Blog.objects.get(name__iexact='beatles blog')
SQL equivalent::
SELECT ... WHERE name ILIKE 'beatles blog';
Note this will match ``'Beatles Blog'``, ``'beatles blog'``, ``'BeAtLes
BLoG'``, etc.
.. admonition:: SQLite users
When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the :ref:`database note <sqlite-string-matching>` about string
comparisons. SQLite does not do case-insensitive matching for Unicode
strings.
.. fieldlookup:: contains
contains
~~~~~~~~
Case-sensitive containment test.
Example::
Entry.objects.get(headline__contains='Lennon')
SQL equivalent::
SELECT ... WHERE headline LIKE '%Lennon%';
Note this will match the headline ``'Today Lennon honored'`` but not
``'today lennon honored'``.
SQLite doesn't support case-sensitive ``LIKE`` statements; ``contains`` acts
like ``icontains`` for SQLite.
.. fieldlookup:: icontains
icontains
~~~~~~~~~
Case-insensitive containment test.
Example::
Entry.objects.get(headline__icontains='Lennon')
SQL equivalent::
SELECT ... WHERE headline ILIKE '%Lennon%';
.. admonition:: SQLite users
When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the :ref:`database note <sqlite-string-matching>` about string
comparisons.
.. fieldlookup:: in
in
~~
In a given list.
Example::
Entry.objects.filter(id__in=[1, 3, 4])
SQL equivalent::
SELECT ... WHERE id IN (1, 3, 4);
You can also use a queryset to dynamically evaluate the list of values
instead of providing a list of literal values::
inner_qs = Blog.objects.filter(name__contains='Cheddar')
entries = Entry.objects.filter(blog__in=inner_qs)
This queryset will be evaluated as subselect statement::
SELECT ... WHERE blog.id IN (SELECT id FROM ... WHERE NAME LIKE '%Cheddar%')
The above code fragment could also be written as follows::
inner_q = Blog.objects.filter(name__contains='Cheddar').values('pk').query
entries = Entry.objects.filter(blog__in=inner_q)
.. versionchanged:: 1.1
In Django 1.0, only the latter piece of code is valid.
This second form is a bit less readable and unnatural to write, since it
accesses the internal ``query`` attribute and requires a ``ValuesQuerySet``.
If your code doesn't require compatibility with Django 1.0, use the first
form, passing in a queryset directly.
If you pass in a ``ValuesQuerySet`` or ``ValuesListQuerySet`` (the result of
calling ``values()`` or ``values_list()`` on a queryset) as the value to an
``__in`` lookup, you need to ensure you are only extracting one field in the
result. For example, this will work (filtering on the blog names)::
inner_qs = Blog.objects.filter(name__contains='Ch').values('name')
entries = Entry.objects.filter(blog__name__in=inner_qs)
This example will raise an exception, since the inner query is trying to
extract two field values, where only one is expected::
# Bad code! Will raise a TypeError.
inner_qs = Blog.objects.filter(name__contains='Ch').values('name', 'id')
entries = Entry.objects.filter(blog__name__in=inner_qs)
.. warning::
This ``query`` attribute should be considered an opaque internal attribute.
It's fine to use it like above, but its API may change between Django
versions.
.. admonition:: Performance considerations
Be cautious about using nested queries and understand your database
server's performance characteristics (if in doubt, benchmark!). Some
database backends, most notably MySQL, don't optimize nested queries very
well. It is more efficient, in those cases, to extract a list of values
and then pass that into the second query. That is, execute two queries
instead of one::
values = Blog.objects.filter(
name__contains='Cheddar').values_list('pk', flat=True)
entries = Entry.objects.filter(blog__in=list(values))
Note the ``list()`` call around the Blog ``QuerySet`` to force execution of
the first query. Without it, a nested query would be executed, because
:ref:`querysets-are-lazy`.
.. fieldlookup:: gt
gt
~~
Greater than.
Example::
Entry.objects.filter(id__gt=4)
SQL equivalent::
SELECT ... WHERE id > 4;
.. fieldlookup:: gte
gte
~~~
Greater than or equal to.
.. fieldlookup:: lt
lt
~~
Less than.
.. fieldlookup:: lte
lte
~~~
Less than or equal to.
.. fieldlookup:: startswith
startswith
~~~~~~~~~~
Case-sensitive starts-with.
Example::
Entry.objects.filter(headline__startswith='Will')
SQL equivalent::
SELECT ... WHERE headline LIKE 'Will%';
SQLite doesn't support case-sensitive ``LIKE`` statements; ``startswith`` acts
like ``istartswith`` for SQLite.
.. fieldlookup:: istartswith
istartswith
~~~~~~~~~~~
Case-insensitive starts-with.
Example::
Entry.objects.filter(headline__istartswith='will')
SQL equivalent::
SELECT ... WHERE headline ILIKE 'Will%';
.. admonition:: SQLite users
When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the :ref:`database note <sqlite-string-matching>` about string
comparisons.
.. fieldlookup:: endswith
endswith
~~~~~~~~
Case-sensitive ends-with.
Example::
Entry.objects.filter(headline__endswith='cats')
SQL equivalent::
SELECT ... WHERE headline LIKE '%cats';
SQLite doesn't support case-sensitive ``LIKE`` statements; ``endswith`` acts
like ``iendswith`` for SQLite.
.. fieldlookup:: iendswith
iendswith
~~~~~~~~~
Case-insensitive ends-with.
Example::
Entry.objects.filter(headline__iendswith='will')
SQL equivalent::
SELECT ... WHERE headline ILIKE '%will'
.. admonition:: SQLite users
When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the :ref:`database note <sqlite-string-matching>` about string
comparisons.
.. fieldlookup:: range
range
~~~~~
Range test (inclusive).
Example::
start_date = datetime.date(2005, 1, 1)
end_date = datetime.date(2005, 3, 31)
Entry.objects.filter(pub_date__range=(start_date, end_date))
SQL equivalent::
SELECT ... WHERE pub_date BETWEEN '2005-01-01' and '2005-03-31';
You can use ``range`` anywhere you can use ``BETWEEN`` in SQL -- for dates,
numbers and even characters.
.. fieldlookup:: year
year
~~~~
For date/datetime fields, exact year match. Takes a four-digit year.
Example::
Entry.objects.filter(pub_date__year=2005)
SQL equivalent::
SELECT ... WHERE EXTRACT('year' FROM pub_date) = '2005';
(The exact SQL syntax varies for each database engine.)
.. fieldlookup:: month
month
~~~~~
For date/datetime fields, exact month match. Takes an integer 1 (January)
through 12 (December).
Example::
Entry.objects.filter(pub_date__month=12)
SQL equivalent::
SELECT ... WHERE EXTRACT('month' FROM pub_date) = '12';
(The exact SQL syntax varies for each database engine.)
.. fieldlookup:: day
day
~~~
For date/datetime fields, exact day match.
Example::
Entry.objects.filter(pub_date__day=3)
SQL equivalent::
SELECT ... WHERE EXTRACT('day' FROM pub_date) = '3';
(The exact SQL syntax varies for each database engine.)
Note this will match any record with a pub_date on the third day of the month,
such as January 3, July 3, etc.
.. fieldlookup:: week_day
week_day
~~~~~~~~
.. versionadded:: 1.1
For date/datetime fields, a 'day of the week' match.
Takes an integer value representing the day of week from 1 (Sunday) to 7
(Saturday).
Example::
Entry.objects.filter(pub_date__week_day=2)
(No equivalent SQL code fragment is included for this lookup because
implementation of the relevant query varies among different database engines.)
Note this will match any record with a pub_date that falls on a Monday (day 2
of the week), regardless of the month or year in which it occurs. Week days
are indexed with day 1 being Sunday and day 7 being Saturday.
.. fieldlookup:: isnull
isnull
~~~~~~
Takes either ``True`` or ``False``, which correspond to SQL queries of
``IS NULL`` and ``IS NOT NULL``, respectively.
Example::
Entry.objects.filter(pub_date__isnull=True)
SQL equivalent::
SELECT ... WHERE pub_date IS NULL;
.. fieldlookup:: search
search
~~~~~~
A boolean full-text search, taking advantage of full-text indexing. This is
like ``contains`` but is significantly faster due to full-text indexing.
Example::
Entry.objects.filter(headline__search="+Django -jazz Python")
SQL equivalent::
SELECT ... WHERE MATCH(tablename, headline) AGAINST (+Django -jazz Python IN BOOLEAN MODE);
Note this is only available in MySQL and requires direct manipulation of the
database to add the full-text index. By default Django uses BOOLEAN MODE for
full text searches. `See the MySQL documentation for additional details.
<http://dev.mysql.com/doc/refman/5.1/en/fulltext-boolean.html>`_
.. fieldlookup:: regex
regex
~~~~~
.. versionadded:: 1.0
Case-sensitive regular expression match.
The regular expression syntax is that of the database backend in use.
In the case of SQLite, which has no built in regular expression support,
this feature is provided by a (Python) user-defined REGEXP function, and
the regular expression syntax is therefore that of Python's ``re`` module.
Example::
Entry.objects.get(title__regex=r'^(An?|The) +')
SQL equivalents::
SELECT ... WHERE title REGEXP BINARY '^(An?|The) +'; -- MySQL
SELECT ... WHERE REGEXP_LIKE(title, '^(an?|the) +', 'c'); -- Oracle
SELECT ... WHERE title ~ '^(An?|The) +'; -- PostgreSQL
SELECT ... WHERE title REGEXP '^(An?|The) +'; -- SQLite
Using raw strings (e.g., ``r'foo'`` instead of ``'foo'``) for passing in the
regular expression syntax is recommended.
.. fieldlookup:: iregex
iregex
~~~~~~
.. versionadded:: 1.0
Case-insensitive regular expression match.
Example::
Entry.objects.get(title__iregex=r'^(an?|the) +')
SQL equivalents::
SELECT ... WHERE title REGEXP '^(an?|the) +'; -- MySQL
SELECT ... WHERE REGEXP_LIKE(title, '^(an?|the) +', 'i'); -- Oracle
SELECT ... WHERE title ~* '^(an?|the) +'; -- PostgreSQL
SELECT ... WHERE title REGEXP '(?i)^(an?|the) +'; -- SQLite
.. _aggregation-functions:
Aggregation Functions
---------------------
.. versionadded:: 1.1
Django provides the following aggregation functions in the
``django.db.models`` module. For details on how to use these
aggregate functions, see
:doc:`the topic guide on aggregation </topics/db/aggregation>`.
Avg
~~~
.. class:: Avg(field)
Returns the mean value of the given field.
* Default alias: ``<field>__avg``
* Return type: float
Count
~~~~~
.. class:: Count(field, distinct=False)
Returns the number of objects that are related through the provided field.
* Default alias: ``<field>__count``
* Return type: integer
Has one optional argument:
.. attribute:: distinct
If distinct=True, the count will only include unique instances. This has
the SQL equivalent of ``COUNT(DISTINCT field)``. Default value is ``False``.
Max
~~~
.. class:: Max(field)
Returns the maximum value of the given field.
* Default alias: ``<field>__max``
* Return type: same as input field
Min
~~~
.. class:: Min(field)
Returns the minimum value of the given field.
* Default alias: ``<field>__min``
* Return type: same as input field
StdDev
~~~~~~
.. class:: StdDev(field, sample=False)
Returns the standard deviation of the data in the provided field.
* Default alias: ``<field>__stddev``
* Return type: float
Has one optional argument:
.. attribute:: sample
By default, ``StdDev`` returns the population standard deviation. However,
if ``sample=True``, the return value will be the sample standard deviation.
.. admonition:: SQLite
SQLite doesn't provide ``StdDev`` out of the box. An implementation is
available as an extension module for SQLite. Consult the SQlite
documentation for instructions on obtaining and installing this extension.
Sum
~~~
.. class:: Sum(field)
Computes the sum of all values of the given field.
* Default alias: ``<field>__sum``
* Return type: same as input field
Variance
~~~~~~~~
.. class:: Variance(field, sample=False)
Returns the variance of the data in the provided field.
* Default alias: ``<field>__variance``
* Return type: float
Has one optional argument:
.. attribute:: sample
By default, ``Variance`` returns the population variance. However,
if ``sample=True``, the return value will be the sample variance.
.. admonition:: SQLite
SQLite doesn't provide ``Variance`` out of the box. An implementation is
available as an extension module for SQLite. Consult the SQlite
documentation for instructions on obtaining and installing this extension.
|