summaryrefslogtreecommitdiff
path: root/parts/django/docs/ref/contrib/gis/geos.txt
blob: 06a88a88ece6787548bf51764bb00ecf29463a47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
.. _ref-geos:

========
GEOS API
========

.. module:: django.contrib.gis.geos
   :synopsis: GeoDjango's high-level interface to the GEOS library.

Background
==========

What is GEOS?
-------------

`GEOS`__ stands for **G**\ eometry **E**\ ngine - **O**\ pen **S**\ ource,
and is a C++ library, ported from the  `Java Topology Suite`__.  GEOS
implements the OpenGIS `Simple Features for SQL`__ spatial predicate functions
and spatial operators. GEOS, now an OSGeo project, was initially developed and
maintained by `Refractions Research`__ of Victoria, Canada.

__ http://trac.osgeo.org/geos/
__ http://sourceforge.net/projects/jts-topo-suite/
__ http://www.opengeospatial.org/standards/sfs
__ http://www.refractions.net/

Features
--------

GeoDjango implements a high-level Python wrapper for the GEOS library, its
features include:

* A BSD-licensed interface to the GEOS geometry routines, implemented purely
  in Python using ``ctypes``.
* Loosely-coupled to GeoDjango.  For example, :class:`GEOSGeometry` objects
  may be used outside of a django project/application.  In other words, 
  no need to have ``DJANGO_SETTINGS_MODULE`` set or use a database, etc.
* Mutability: :class:`GEOSGeometry` objects may be modified.
* Cross-platform and tested; compatible with Windows, Linux, Solaris, and Mac 
  OS X platforms.

.. _geos-tutorial:

Tutorial
========

This section contains a brief introduction and tutorial to using 
:class:`GEOSGeometry` objects.

Creating a Geometry
-------------------

:class:`GEOSGeometry` objects may be created in a few ways.  The first is
to simply instantiate the object on some spatial input -- the following
are examples of creating the same geometry from WKT, HEX, WKB, and GeoJSON::

    >>> from django.contrib.gis.geos import GEOSGeometry
    >>> pnt = GEOSGeometry('POINT(5 23)') # WKT
    >>> pnt = GEOSGeometry('010100000000000000000014400000000000003740') # HEX
    >>> pnt = GEOSGeometry(buffer('\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x007@'))
    >>> pnt = GEOSGeometry('{ "type": "Point", "coordinates": [ 5.000000, 23.000000 ] }') # GeoJSON

Another option is to use the constructor for the specific geometry type
that you wish to create.  For example, a :class:`Point` object may be
created by passing in the X and Y coordinates into its constructor::

    >>> from django.contrib.gis.geos import Point
    >>> pnt = Point(5, 23)

Finally, there are :func:`fromstr` and :func:`fromfile` factory methods, which
return a :class:`GEOSGeometry` object from an input string or a file::

    >>> from django.contrib.gis.geos import fromstr, fromfile
    >>> pnt = fromstr('POINT(5 23)')
    >>> pnt = fromfile('/path/to/pnt.wkt')
    >>> pnt = fromfile(open('/path/to/pnt.wkt'))

Geometries are Pythonic 
-----------------------
:class:`GEOSGeometry` objects are 'Pythonic', in other words components may
be accessed, modified, and iterated over using standard Python conventions.
For example, you can iterate over the coordinates in a :class:`Point`::

    >>> pnt = Point(5, 23)
    >>> [coord for coord in pnt]
    [5.0, 23.0]

With any geometry object, the :attr:`GEOSGeometry.coords` property
may be used to get the geometry coordinates as a Python tuple::

    >>> pnt.coords
    (5.0, 23.0)

You can get/set geometry components using standard Python indexing
techniques.  However, what is returned depends on the geometry type
of the object.  For example, indexing on a :class:`LineString`
returns a coordinate tuple::

    >>> from django.contrib.gis.geos import LineString
    >>> line = LineString((0, 0), (0, 50), (50, 50), (50, 0), (0, 0))
    >>> line[0]
    (0.0, 0.0)
    >>> line[-2]
    (50.0, 0.0)

Whereas indexing on a :class:`Polygon` will return the ring
(a :class:`LinearRing` object) corresponding to the index::

    >>> from django.contrib.gis.geos import Polygon
    >>> poly = Polygon( ((0.0, 0.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (0.0, 0.0)) )
    >>> poly[0]
    <LinearRing object at 0x1044395b0>
    >>> poly[0][-2] # second-to-last coordinate of external ring
    (50.0, 0.0)

In addition, coordinates/components of the geometry may added or modified,
just like a Python list::

    >>> line[0] = (1.0, 1.0)
    >>> line.pop()
    (0.0, 0.0)
    >>> line.append((1.0, 1.0))
    >>> line.coords
    ((1.0, 1.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (1.0, 1.0))

Geometry Objects
================

``GEOSGeometry``
----------------

.. class:: GEOSGeometry(geo_input[, srid=None])

  :param geo_input: Geometry input value
  :type geo_input: string or buffer
  :param srid: spatial reference identifier
  :type srid: integer

This is the base class for all GEOS geometry objects.  It initializes on the
given ``geo_input`` argument, and then assumes the proper geometry subclass
(e.g., ``GEOSGeometry('POINT(1 1)')`` will create a :class:`Point` object).

The following input formats, along with their corresponding Python types,
are accepted:

=============  ======================
Format         Input Type
=============  ======================
WKT / EWKT     ``str`` or ``unicode`` 
HEX / HEXEWKB  ``str`` or ``unicode``
WKB / EWKB     ``buffer``
GeoJSON        ``str`` or ``unicode``
=============  ======================

Properties
~~~~~~~~~~

.. attribute:: GEOSGeometry.coords

Returns the coordinates of the geometry as a tuple.

.. attribute:: GEOSGeometry.empty

Returns whether or not the set of points in the geometry is empty. 

.. attribute:: GEOSGeometry.geom_type

Returns a string corresponding to the type of geometry.  For example::

    >>> pnt = GEOSGeometry('POINT(5 23)')
    >>> pnt.geom_type
    'Point'

.. attribute:: GEOSGeometry.geom_typeid

Returns the GEOS geometry type identification number.  The following table
shows the value for each geometry type:

===========================  ========
Geometry                     ID
===========================  ========
:class:`Point`               0
:class:`LineString`          1
:class:`LinearRing`          2
:class:`Polygon`             3
:class:`MultiPoint`          4
:class:`MultiLineString`     5
:class:`MultiPolygon`        6
:class:`GeometryCollection`  7
===========================  ========

.. attribute:: GEOSGeometry.num_coords

Returns the number of coordinates in the geometry.

.. attribute:: GEOSGeometry.num_geom

Returns the number of geometries in this geometry.  In other words, will
return 1 on anything but geometry collections.

.. attribute:: GEOSGeometry.hasz

Returns a boolean indicating whether the geometry is three-dimensional.

.. attribute:: GEOSGeometry.ring

Returns a boolean indicating whether the geometry is a ``LinearRing``.

.. attribute:: GEOSGeometry.simple

Returns a boolean indicating whether the geometry is 'simple'. A geometry
is simple if and only if it does not intersect itself (except at boundary
points).  For example, a :class:`LineString` object is not simple if it
intersects itself. Thus, :class:`LinearRing` and :class`Polygon` objects
are always simple because they do cannot intersect themselves, by
definition.

.. attribute:: GEOSGeometry.valid

Returns a boolean indicating whether the geometry is valid.

.. attribute:: GEOSGeometry.srid

Property that may be used to retrieve or set the SRID associated with the
geometry.  For example::

    >>> pnt = Point(5, 23)
    >>> print pnt.srid
    None
    >>> pnt.srid = 4326
    >>> pnt.srid
    4326

Output Properties
~~~~~~~~~~~~~~~~~

The properties in this section export the :class:`GEOSGeometry` object into
a different.  This output may be in the form of a string, buffer, or even
another object.

.. attribute:: GEOSGeometry.ewkt

Returns the "extended" Well-Known Text of the geometry.  This representation
is specific to PostGIS and is a super set of the OGC WKT standard. [#fnogc]_
Essentially the SRID is prepended to the WKT representation, for example 
``SRID=4326;POINT(5 23)``. 

.. note::

   The output from this property does not include the 3dm, 3dz, and 4d 
   information that PostGIS supports in its EWKT representations.

.. attribute:: GEOSGeometry.hex

Returns the WKB of this Geometry in hexadecimal form.  Please note
that the SRID and Z values are not included in this representation
because it is not a part of the OGC specification (use the 
:attr:`GEOSGeometry.hexewkb` property instead).

.. attribute:: GEOSGeometry.hexewkb

.. versionadded:: 1.2

Returns the EWKB of this Geometry in hexadecimal form.  This is an 
extension of the WKB specification that includes SRID and Z values 
that are a part of this geometry.

.. note::

   GEOS 3.1 is *required* if you want valid 3D HEXEWKB.

.. attribute:: GEOSGeometry.json

Returns the GeoJSON representation of the geometry.

.. note::

    Requires GDAL.

.. attribute:: GEOSGeometry.geojson

Alias for :attr:`GEOSGeometry.json`.

.. attribute:: GEOSGeometry.kml

Returns a `KML`__ (Keyhole Markup Language) representation of the
geometry.  This should only be used for geometries with an SRID of 
4326 (WGS84), but this restriction is not enforced.

.. attribute:: GEOSGeometry.ogr

Returns an :class:`~django.contrib.gis.gdal.OGRGeometry` object 
correspondg to the GEOS geometry.

.. note::

    Requires GDAL.

.. _wkb:

.. attribute:: GEOSGeometry.wkb

Returns the WKB (Well-Known Binary) representation of this Geometry
as a Python buffer.  SRID and Z values are not included, use the
:attr:`GEOSGeometry.ewkb` property instead.

.. _ewkb:

.. attribute:: GEOSGeometry.ewkb

.. versionadded:: 1.2

Return the EWKB representation of this Geometry as a Python buffer.
This is an extension of the WKB specification that includes any SRID
and Z values that are a part of this geometry.

.. note::

   GEOS 3.1 is *required* if you want valid 3D EWKB.

.. attribute:: GEOSGeometry.wkt

Returns the Well-Known Text of the geometry (an OGC standard).

__ http://code.google.com/apis/kml/documentation/

Spatial Predicate Methods
~~~~~~~~~~~~~~~~~~~~~~~~~

All of the following spatial predicate methods take another
:class:`GEOSGeometry` instance (``other``) as a parameter, and
return a boolean.

.. method:: GEOSGeometry.contains(other)

Returns ``True`` if :meth:`GEOSGeometry.within` is ``False``.

.. method:: GEOSGeometry.crosses(other)

Returns ``True`` if the DE-9IM intersection matrix for the two Geometries
is ``T*T******`` (for a point and a curve,a point and an area or a line 
and an area) ``0********`` (for two curves).

.. method:: GEOSGeometry.disjoint(other)

Returns ``True`` if the DE-9IM intersection matrix for the two geometries
is ``FF*FF****``.

.. method:: GEOSGeometry.equals(other)

Returns ``True`` if the DE-9IM intersection matrix for the two geometries 
is ``T*F**FFF*``.

.. method:: GEOSGeometry.equals_exact(other, tolerance=0)

Returns true if the two geometries are exactly equal, up to a
specified tolerance.  The ``tolerance`` value should be a floating
point number representing the error tolerance in the comparison, e.g.,
``poly1.equals_exact(poly2, 0.001)`` will compare equality to within
one thousandth of a unit.

.. method:: GEOSGeometry.intersects(other)

Returns ``True`` if :meth:`GEOSGeometry.disjoint` is ``False``.

.. method:: GEOSGeometry.overlaps(other)

Returns true if the DE-9IM intersection matrix for the two geometries
is ``T*T***T**`` (for two points or two surfaces) ``1*T***T**``
(for two curves).

.. method:: GEOSGeometry.relate_pattern(other, pattern)

Returns ``True`` if the elements in the DE-9IM intersection matrix 
for this geometry and the other matches the given ``pattern`` -- 
a string of nine characters from the alphabet: {``T``, ``F``, ``*``, ``0``}.

.. method:: GEOSGeometry.touches(other)

Returns ``True`` if the DE-9IM intersection matrix for the two geometries
is ``FT*******``, ``F**T*****`` or ``F***T****``.

.. method:: GEOSGeometry.within(other)

Returns ``True`` if the DE-9IM intersection matrix for the two geometries
is ``T*F**F***``.

Topological Methods
~~~~~~~~~~~~~~~~~~~

.. method:: GEOSGeometry.buffer(width, quadsegs=8)

Returns a :class:`GEOSGeometry` that represents all points whose distance
from this geometry is less than or equal to the given ``width``. The optional 
``quadsegs`` keyword sets the number of segments used to approximate a 
quarter circle (defaults is 8).

.. method:: GEOSGeometry.difference(other)

Returns a :class:`GEOSGeometry` representing the points making up this
geometry that do not make up other.

.. method:: GEOSGeometry:intersection(other)

Returns a :class:`GEOSGeometry` representing the points shared by this
geometry and other.

.. method:: GEOSGeometry.relate(other)

Returns the DE-9IM intersection matrix (a string) representing the
topological relationship between this geometry and the other.

.. method:: GEOSGeometry.simplify(tolerance=0.0, preserve_topology=False)

Returns a new :class:`GEOSGeometry`, simplified using the Douglas-Peucker
algorithm to the specified tolerance.  A higher tolerance value implies
less points in the output.  If no tolerance is tolerance provided,
it defaults to 0.

By default, this function does not preserve topology - e.g., 
:class:`Polygon` objects can be split, collapsed into lines or disappear.
:class:`Polygon` holes can be created or disappear, and lines can cross.
By specifying ``preserve_topology=True``, the result will have the same
dimension and number of components as the input, however, this is 
significantly slower.   

.. method:: GEOSGeometry.sym_difference(other)

Returns a :class:`GEOSGeometry` combining the points in this geometry 
not in other, and the points in other not in this geometry.

.. method:: GEOSGeometry.union(other)

Returns a :class:`GEOSGeometry` representing all the points in this 
geometry and the other.

Topological Properties
~~~~~~~~~~~~~~~~~~~~~~

.. attribute:: GEOSGeometry.boundary

Returns the boundary as a newly allocated Geometry object.

.. attribute:: GEOSGeometry.centroid

Returns a :class:`Point` object representing the geometric center of
the geometry.  The point is not guaranteed to be on the interior
of the geometry.

.. attribute:: GEOSGeometry.convex_hull

Returns the smallest :class:`Polygon` that contains all the points in
the geometry.

.. attribute:: GEOSGeometry.envelope

Returns a :class:`Polygon` that represents the bounding envelope of
this geometry.

.. attribute:: GEOSGeometry.point_on_surface

Computes and returns a :class:`Point` guaranteed to be on the interior
of this geometry.

Other Properties & Methods
~~~~~~~~~~~~~~~~~~~~~~~~~~

.. attribute:: GEOSGeometry.area

This property returns the area of the Geometry.

.. attribute:: GEOSGeometry.extent

This property returns the extent of this geometry as a 4-tuple, 
consisting of (xmin, ymin, xmax, ymax).

.. method:: GEOSGeometry.clone()

This method returns a :class:`GEOSGeometry` that is a clone of the original.

.. method:: GEOSGeometry.distance(geom)

Returns the distance between the closest points on this geometry and the given
``geom`` (another :class:`GEOSGeometry` object).

.. note::

    GEOS distance calculations are  linear -- in other words, GEOS does not
    perform a spherical calculation even if the SRID specifies a geographic 
    coordinate system.

.. attribute:: GEOSGeometry.length

Returns the length of this geometry (e.g., 0 for a :class:`Point`, 
the length of a :class:`LineString`, or the circumference of 
a :class:`Polygon`).

.. attribute:: GEOSGeometry.prepared

.. versionadded:: 1.1

.. note::

    Support for prepared geometries requires GEOS 3.1.

Returns a GEOS ``PreparedGeometry`` for the contents of this geometry.  
``PreparedGeometry`` objects are optimized for the contains, intersects,
and covers operations.  Refer to the :ref:`prepared-geometries` documentation
for more information.

.. attribute:: GEOSGeometry.srs

Returns a :class:`~django.contrib.gis.gdal.SpatialReference` object
corresponding to the SRID of the geometry or ``None``.

.. note::

    Requires GDAL.

.. method:: transform(ct, clone=False)

Transforms the geometry according to the given coordinate transformation paramter
(``ct``), which may be an integer SRID, spatial reference WKT string,
a PROJ.4 string, a :class:`~django.contrib.gis.gdal.SpatialReference` object, or a 
:class:`~django.contrib.gis.gdal.CoordTransform` object. By default, the geometry
is transformed in-place and nothing is returned. However if the ``clone`` keyword
is set, then the geometry is not modified and a transformed clone of the geometry
is returned instead.

.. note::

    Requires GDAL.

``Point``
---------

.. class:: Point(x, y, z=None, srid=None)

   ``Point`` objects are instantiated using arguments that represent
   the component coordinates of the point or with a single sequence
   coordinates.  For example, the following are equivalent::

       >>> pnt = Point(5, 23)
       >>> pnt = Point([5, 23])

``LineString``
--------------

.. class:: LineString(*args, **kwargs)

   ``LineString`` objects are instantiated using arguments that are
   either a sequence of coordinates or :class:`Point` objects.
   For example, the following are equivalent::

       >>> ls = LineString((0, 0), (1, 1))
       >>> ls = LineString(Point(0, 0), Point(1, 1))

   In addition, ``LineString`` objects may also be created by passing
   in a single sequence of coordinate or :class:`Point` objects::

       >>> ls = LineString( ((0, 0), (1, 1)) )
       >>> ls = LineString( [Point(0, 0), Point(1, 1)] )

``LinearRing``
--------------

.. class:: LinearRing(*args, **kwargs)

   ``LinearRing`` objects are constructed in the exact same way as
   :class:`LineString` objects, however the coordinates must be
   *closed*, in other words, the first coordinates must be the
   same as the last coordinates.  For example::

       >>> ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))

   Notice that ``(0, 0)`` is the first and last coordinate -- if
   they were not equal, an error would be raised.

``Polygon``
-----------

.. class:: Polygon(*args, **kwargs)

   ``Polygon`` objects may be instantiated by passing in one or
   more parameters that represent the rings of the polygon.  The
   parameters must either be :class:`LinearRing` instances, or
   a sequence that may be used to construct a :class:`LinearRing`::

       >>> ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
       >>> int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
       >>> poly = Polygon(ext_coords, int_coords)
       >>> poly = Polygon(LinearRing(ext_coords), LinearRing(int_coords))

   .. classmethod:: from_bbox(bbox)

   .. versionadded:: 1.1

   Returns a polygon object from the given bounding-box, a 4-tuple
   comprising (xmin, ymin, xmax, ymax).

   .. attribute:: num_interior_rings

   Returns the number of interior rings in this geometry.

Geometry Collections
====================

``MultiPoint``
--------------

.. class:: MultiPoint(*args, **kwargs)

   ``MultiPoint`` objects may be instantiated by passing in one
   or more :class:`Point` objects as arguments, or a single
   sequence of :class:`Point` objects::

       >>> mp = MultiPoint(Point(0, 0), Point(1, 1))
       >>> mp = MultiPoint( (Point(0, 0), Point(1, 1)) )

``MultiLineString``
-------------------

.. class:: MultiLineString(*args, **kwargs)

   ``MultiLineString`` objects may be instantiated by passing in one
   or more :class:`LineString` objects as arguments, or a single
   sequence of :class:`LineString` objects::

       >>> ls1 = LineString((0, 0), (1, 1))
       >>> ls2 = LineString((2, 2), (3, 3))
       >>> mls = MultiLineString(ls1, ls2)
       >>> mls = MultiLineString([ls1, ls2])

   .. attribute:: merged

   .. versionadded:: 1.1

   Returns a :class:`LineString` representing the line merge of
   all the components in this ``MultiLineString``.
       

``MultiPolygon``
----------------

.. class:: MultiPolygon(*args, **kwargs)

   ``MultiPolygon`` objects may be instantiated by passing one or
   more :class:`Polygon` objects as arguments, or a single sequence
   of :class:`Polygon` objects::

       >>> p1 = Polygon( ((0, 0), (0, 1), (1, 1), (0, 0)) )
       >>> p2 = Polygon( ((1, 1), (1, 2), (2, 2), (1, 1)) )
       >>> mp = MultiPolygon(p1, p2)
       >>> mp = MultiPolygon([p1, p2])

   .. attribute:: cascaded_union

   .. versionadded:: 1.1

   Returns a :class:`Polygon` that is the union of all of the component
   polygons in this collection.  The algorithm employed is significantly
   more efficient (faster) than trying to union the geometries together
   individually. [#fncascadedunion]_

   .. note::

       GEOS 3.1 is *required* to peform cascaded unions.

``GeometryCollection``
----------------------

.. class:: GeometryCollection(*args, **kwargs)

   ``GeometryCollection`` objects may be instantiated by passing in
   one or more other :class:`GEOSGeometry` as arguments, or a single
   sequence of :class:`GEOSGeometry` objects::

       >>> poly = Polygon( ((0, 0), (0, 1), (1, 1), (0, 0)) )
       >>> gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
       >>> gc = GeometryCollection((Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly))

.. _prepared-geometries:

Prepared Geometries
===================

.. versionadded: 1.1

In order to obtain a prepared geometry, just access the
:attr:`GEOSGeometry.prepared` property.  Once you have a
``PreparedGeometry`` instance its spatial predicate methods, listed below,
may be used with other ``GEOSGeometry`` objects.  An operation with a prepared
geometry can be orders of magnitude faster -- the more complex the geometry 
that is prepared, the larger the speedup in the operation.  For more information,
please consult the `GEOS wiki page on prepared geometries <http://trac.osgeo.org/geos/wiki/PreparedGeometry>`_.

.. note::

   GEOS 3.1 is *required* in order to use prepared geometries.

For example::

    >>> from django.contrib.gis.geos import Point, Polygon
    >>> poly = Polygon.from_bbox((0, 0, 5, 5))
    >>> prep_poly = poly.prepared
    >>> prep_poly.contains(Point(2.5, 2.5))
    True

``PreparedGeometry``
--------------------

.. class:: PreparedGeometry

  All methods on ``PreparedGeometry`` take an ``other`` argument, which
  must be a :class:`GEOSGeometry` instance.

  .. method:: contains(other)

  .. method:: contains_properly(other)

  .. method:: covers(other)

  .. method:: intersects(other)

Geometry Factories
==================

.. function:: fromfile(file_h)

   :param file_h: input file that contains spatial data
   :type file_h: a Python ``file`` object or a string path to the file
   :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the file

Example::

    >>> from django.contrib.gis.geos import fromfile
    >>> g = fromfile('/home/bob/geom.wkt')

.. function:: fromstr(string, [,srid=None])

   :param string: string that contains spatial data
   :type string: string
   :param srid: spatial reference identifier
   :type srid: integer
   :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the string

Example::

    >>> from django.contrib.gis.geos import fromstr
    >>> pnt = fromstr('POINT(-90.5 29.5)', srid=4326)

I/O Objects
===========

.. versionadded: 1.1

Reader Objects
--------------

The reader I/O classes simply return a :class:`GEOSGeometry` instance from the
WKB and/or WKT input given to their ``read(geom)`` method.

.. class:: WKBReader

Example::

    >>> from django.contrib.gis.geos import WKBReader
    >>> wkb_r = WKBReader()
    >>> wkb_r.read('0101000000000000000000F03F000000000000F03F')
    <Point object at 0x103a88910>

.. class:: WKTReader

Example::

    >>> from django.contrib.gis.geos import WKTReader
    >>> wkt_r = WKTReader()
    >>> wkt_r.read('POINT(1 1)')
    <Point object at 0x103a88b50>

Writer Objects
--------------

All writer objects have a ``write(geom)`` method that returns either the
WKB or WKT of the given geometry.  In addition, :class:`WKBWriter` objects
also have properties that may be used to change the byte order, and or
include the SRID and 3D values (in other words, EWKB).

.. class:: WKBWriter

``WKBWriter`` provides the most control over its output.  By default it
returns OGC-compliant WKB when it's ``write`` method is called.  However, 
it has properties that allow for the creation of EWKB, a superset of the
WKB standard that includes additional information.

.. method:: WKBWriter.write(geom)

Returns the WKB of the given geometry as a Python ``buffer`` object.
Example::

    >>> from django.contrib.gis.geos import Point, WKBWriter
    >>> pnt = Point(1, 1)
    >>> wkb_w = WKBWriter()
    >>> wkb_w.write(pnt)
    <read-only buffer for 0x103a898f0, size -1, offset 0 at 0x103a89930>

.. method:: WKBWriter.write_hex(geom)

Returns WKB of the geometry in hexadecimal.  Example::

    >>> from django.contrib.gis.geos import Point, WKBWriter
    >>> pnt = Point(1, 1)
    >>> wkb_w = WKBWriter()
    >>> wkb_w.write_hex(pnt)
    '0101000000000000000000F03F000000000000F03F'

.. attribute:: WKBWriter.byteorder

This property may be be set to change the byte-order of the geometry
representation.

=============== =================================================
Byteorder Value Description
=============== =================================================
0               Big Endian (e.g., compatible with RISC systems)
1               Little Endian (e.g., compatible with x86 systems)
=============== =================================================

Example::

    >>> from django.contrib.gis.geos import Point, WKBWriter
    >>> wkb_w = WKBWriter()
    >>> pnt = Point(1, 1)
    >>> wkb_w.write_hex(pnt)
    '0101000000000000000000F03F000000000000F03F'
    >>> wkb_w.byteorder = 0
    '00000000013FF00000000000003FF0000000000000'

.. attribute:: WKBWriter.outdim

This property may be set to change the output dimension of the geometry
representation.  In other words, if you have a 3D geometry then set to 3
so that the Z value is included in the WKB.

============ ===========================
Outdim Value Description
============ ===========================
2            The default, output 2D WKB.
3            Output 3D EWKB.
============ ===========================

Example::

    >>> from django.contrib.gis.geos import Point, WKBWriter
    >>> wkb_w = WKBWriter()
    >>> wkb_w.outdim
    2
    >>> pnt = Point(1, 1, 1)
    >>> wkb_w.write_hex(pnt) # By default, no Z value included:
    '0101000000000000000000F03F000000000000F03F'
    >>> wkb_w.outdim = 3 # Tell writer to include Z values
    >>> wkb_w.write_hex(pnt)
    '0101000080000000000000F03F000000000000F03F000000000000F03F'

.. attribute:: WKBWriter.srid

Set this property with a boolean to indicate whether the SRID of the
geometry should be included with the WKB representation.  Example::

    >>> from django.contrib.gis.geos import Point, WKBWriter
    >>> wkb_w = WKBWriter()
    >>> pnt = Point(1, 1, srid=4326)
    >>> wkb_w.write_hex(pnt) # By default, no SRID included:
    '0101000000000000000000F03F000000000000F03F'
    >>> wkb_w.srid = True # Tell writer to include SRID
    >>> wkb_w.write_hex(pnt)
    '0101000020E6100000000000000000F03F000000000000F03F'

.. class:: WKTWriter

.. method:: WKTWriter.write(geom)

Returns the WKT of the given geometry. Example::

    >>> from django.contrib.gis.geos import Point, WKTWriter
    >>> pnt = Point(1, 1)
    >>> wkt_w = WKTWriter()
    >>> wkt_w.write(pnt)
    'POINT (1.0000000000000000 1.0000000000000000)'


.. rubric:: Footnotes
.. [#fnogc] *See* `PostGIS EWKB, EWKT and Canonical Forms <http://postgis.refractions.net/docs/ch04.html#id2591381>`_, PostGIS documentation at Ch. 4.1.2.
.. [#fncascadedunion] For more information, read Paul Ramsey's blog post about `(Much) Faster Unions in PostGIS 1.4 <http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html>`_ and Martin Davis' blog post on `Fast polygon merging in JTS using Cascaded Union <http://lin-ear-th-inking.blogspot.com/2007/11/fast-polygon-merging-in-jts-using.html>`_.

Settings
========

.. setting:: GEOS_LIBRARY_PATH

GEOS_LIBRARY_PATH
-----------------

A string specifying the location of the GEOS C library.  Typically,
this setting is only used if the GEOS C library is in a non-standard
location (e.g., ``/home/bob/lib/libgeos_c.so``).

.. note::

    The setting must be the *full* path to the **C** shared library; in 
    other words you want to use ``libgeos_c.so``, not ``libgeos.so``.