summaryrefslogtreecommitdiff
path: root/parts/django/docs/ref/contrib/gis/db-api.txt
diff options
context:
space:
mode:
Diffstat (limited to 'parts/django/docs/ref/contrib/gis/db-api.txt')
-rw-r--r--parts/django/docs/ref/contrib/gis/db-api.txt349
1 files changed, 349 insertions, 0 deletions
diff --git a/parts/django/docs/ref/contrib/gis/db-api.txt b/parts/django/docs/ref/contrib/gis/db-api.txt
new file mode 100644
index 0000000..fbced8e
--- /dev/null
+++ b/parts/django/docs/ref/contrib/gis/db-api.txt
@@ -0,0 +1,349 @@
+.. _ref-gis-db-api:
+
+======================
+GeoDjango Database API
+======================
+
+.. module:: django.contrib.gis.db.models
+ :synopsis: GeoDjango's database API.
+
+.. _spatial-backends:
+
+Spatial Backends
+================
+
+.. versionadded:: 1.2
+
+In Django 1.2, support for :doc:`multiple databases </topics/db/multi-db>` was
+introduced. In order to support multiple databases, GeoDjango has segregated
+its functionality into full-fledged spatial database backends:
+
+* :mod:`django.contrib.gis.db.backends.postgis`
+* :mod:`django.contrib.gis.db.backends.mysql`
+* :mod:`django.contrib.gis.db.backends.oracle`
+* :mod:`django.contrib.gis.db.backends.spatialite`
+
+Database Settings Backwards-Compatibility
+-----------------------------------------
+
+In :doc:`Django 1.2 </releases/1.2>`, the way
+to :ref:`specify databases <specifying-databases>` in your settings was changed.
+The old database settings format (e.g., the ``DATABASE_*`` settings)
+is backwards compatible with GeoDjango, and will automatically use the
+appropriate spatial backend as long as :mod:`django.contrib.gis` is in
+your :setting:`INSTALLED_APPS`. For example, if you have the following in
+your settings::
+
+ DATABASE_ENGINE='postgresql_psycopg2'
+
+ ...
+
+ INSTALLED_APPS = (
+ ...
+ 'django.contrib.gis',
+ ...
+ )
+
+Then, :mod:`django.contrib.gis.db.backends.postgis` is automatically used as your
+spatial backend.
+
+.. _mysql-spatial-limitations:
+
+MySQL Spatial Limitations
+-------------------------
+
+MySQL's spatial extensions only support bounding box operations
+(what MySQL calls minimum bounding rectangles, or MBR). Specifically,
+`MySQL does not conform to the OGC standard <http://dev.mysql.com/doc/refman/5.1/en/functions-that-test-spatial-relationships-between-geometries.html>`_:
+
+ Currently, MySQL does not implement these functions
+ [``Contains``, ``Crosses``, ``Disjoint``, ``Intersects``, ``Overlaps``,
+ ``Touches``, ``Within``]
+ according to the specification. Those that are implemented return
+ the same result as the corresponding MBR-based functions.
+
+In other words, while spatial lookups such as :lookup:`contains <gis-contains>`
+are available in GeoDjango when using MySQL, the results returned are really
+equivalent to what would be returned when using :lookup:`bbcontains`
+on a different spatial backend.
+
+.. warning::
+
+ True spatial indexes (R-trees) are only supported with
+ MyISAM tables on MySQL. [#fnmysqlidx]_ In other words, when using
+ MySQL spatial extensions you have to choose between fast spatial
+ lookups and the integrity of your data -- MyISAM tables do
+ not support transactions or foreign key constraints.
+
+Creating and Saving Geographic Models
+=====================================
+Here is an example of how to create a geometry object (assuming the ``Zipcode``
+model)::
+
+ >>> from zipcode.models import Zipcode
+ >>> z = Zipcode(code=77096, poly='POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
+ >>> z.save()
+
+:class:`~django.contrib.gis.geos.GEOSGeometry` objects may also be used to save geometric models::
+
+ >>> from django.contrib.gis.geos import GEOSGeometry
+ >>> poly = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
+ >>> z = Zipcode(code=77096, poly=poly)
+ >>> z.save()
+
+Moreover, if the ``GEOSGeometry`` is in a different coordinate system (has a
+different SRID value) than that of the field, then it will be implicitly
+transformed into the SRID of the model's field, using the spatial database's
+transform procedure::
+
+ >>> poly_3084 = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))', srid=3084) # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'
+ >>> z = Zipcode(code=78212, poly=poly_3084)
+ >>> z.save()
+ >>> from django.db import connection
+ >>> print connection.queries[-1]['sql'] # printing the last SQL statement executed (requires DEBUG=True)
+ INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB('\\001 ... ', 3084), 4326))
+
+Thus, geometry parameters may be passed in using the ``GEOSGeometry`` object, WKT
+(Well Known Text [#fnwkt]_), HEXEWKB (PostGIS specific -- a WKB geometry in
+hexadecimal [#fnewkb]_), and GeoJSON [#fngeojson]_ (requires GDAL). Essentially,
+if the input is not a ``GEOSGeometry`` object, the geometry field will attempt to
+create a ``GEOSGeometry`` instance from the input.
+
+For more information creating :class:`~django.contrib.gis.geos.GEOSGeometry`
+objects, refer to the :ref:`GEOS tutorial <geos-tutorial>`.
+
+.. _spatial-lookups-intro:
+
+Spatial Lookups
+===============
+
+GeoDjango's lookup types may be used with any manager method like
+``filter()``, ``exclude()``, etc. However, the lookup types unique to
+GeoDjango are only available on geometry fields.
+Filters on 'normal' fields (e.g. :class:`~django.db.models.CharField`)
+may be chained with those on geographic fields. Thus, geographic queries
+take the following general form (assuming the ``Zipcode`` model used in the
+:ref:`ref-gis-model-api`)::
+
+ >>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)
+ >>> qs = Zipcode.objects.exclude(...)
+
+For example::
+
+ >>> qs = Zipcode.objects.filter(poly__contains=pnt)
+
+In this case, ``poly`` is the geographic field, :lookup:`contains <gis-contains>`
+is the spatial lookup type, and ``pnt`` is the parameter (which may be a
+:class:`~django.contrib.gis.geos.GEOSGeometry` object or a string of
+GeoJSON , WKT, or HEXEWKB).
+
+A complete reference can be found in the :ref:`spatial lookup reference
+<spatial-lookups>`.
+
+.. note::
+
+ GeoDjango constructs spatial SQL with the :class:`GeoQuerySet`, a
+ subclass of :class:`~django.db.models.QuerySet`. The
+ :class:`GeoManager` instance attached to your model is what
+ enables use of :class:`GeoQuerySet`.
+
+.. _distance-queries:
+
+Distance Queries
+================
+
+Introduction
+------------
+Distance calculations with spatial data is tricky because, unfortunately,
+the Earth is not flat. Some distance queries with fields in a geographic
+coordinate system may have to be expressed differently because of
+limitations in PostGIS. Please see the :ref:`selecting-an-srid` section
+in the :ref:`ref-gis-model-api` documentation for more details.
+
+.. _distance-lookups-intro:
+
+Distance Lookups
+----------------
+*Availability*: PostGIS, Oracle, SpatiaLite
+
+The following distance lookups are available:
+
+* :lookup:`distance_lt`
+* :lookup:`distance_lte`
+* :lookup:`distance_gt`
+* :lookup:`distance_gte`
+* :lookup:`dwithin`
+
+.. note::
+
+ For *measuring*, rather than querying on distances, use the
+ :meth:`GeoQuerySet.distance` method.
+
+Distance lookups take a tuple parameter comprising:
+
+#. A geometry to base calculations from; and
+#. A number or :class:`~django.contrib.gis.measure.Distance` object containing the distance.
+
+If a :class:`~django.contrib.gis.measure.Distance` object is used,
+it may be expressed in any units (the SQL generated will use units
+converted to those of the field); otherwise, numeric parameters are assumed
+to be in the units of the field.
+
+.. note::
+
+ For users of PostGIS 1.4 and below, the routine ``ST_Distance_Sphere``
+ is used by default for calculating distances on geographic coordinate systems
+ (e.g., WGS84) -- which may only be called with point geometries [#fndistsphere14]_.
+ Thus, geographic distance lookups on traditional PostGIS geometry columns are
+ only allowed on :class:`PointField` model fields using a point for the
+ geometry parameter.
+
+.. note::
+
+ In PostGIS 1.5, ``ST_Distance_Sphere`` does *not* limit the geometry types
+ geographic distance queries are performed with. [#fndistsphere15]_ However,
+ these queries may take a long time, as great-circle distances must be
+ calculated on the fly for *every* row in the query. This is because the
+ spatial index on traditional geometry fields cannot be used.
+
+ For much better performance on WGS84 distance queries, consider using
+ :ref:`geography columns <geography-type>` in your database instead because
+ they are able to use their spatial index in distance queries.
+ You can tell GeoDjango to use a geography column by setting ``geography=True``
+ in your field definition.
+
+For example, let's say we have a ``SouthTexasCity`` model (from the
+`GeoDjango distance tests`__ ) on a *projected* coordinate system valid for cities
+in southern Texas::
+
+ from django.contrib.gis.db import models
+
+ class SouthTexasCity(models.Model):
+ name = models.CharField(max_length=30)
+ # A projected coordinate system (only valid for South Texas!)
+ # is used, units are in meters.
+ point = models.PointField(srid=32140)
+ objects = models.GeoManager()
+
+Then distance queries may be performed as follows::
+
+ >>> from django.contrib.gis.geos import *
+ >>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``
+ >>> from geoapp import SouthTexasCity
+ # Distances will be calculated from this point, which does not have to be projected.
+ >>> pnt = fromstr('POINT(-96.876369 29.905320)', srid=4326)
+ # If numeric parameter, units of field (meters in this case) are assumed.
+ >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
+ # Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure unit)
+ >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
+ >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
+ >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))
+
+__ http://code.djangoproject.com/browser/django/trunk/django/contrib/gis/tests/distapp/models.py
+
+.. _compatibility-table:
+
+Compatibility Tables
+====================
+
+.. _spatial-lookup-compatibility:
+
+Spatial Lookups
+---------------
+
+The following table provides a summary of what spatial lookups are available
+for each spatial database backend.
+
+================================= ========= ======== ============ ==========
+Lookup Type PostGIS Oracle MySQL [#]_ SpatiaLite
+================================= ========= ======== ============ ==========
+:lookup:`bbcontains` X X X
+:lookup:`bboverlaps` X X X
+:lookup:`contained` X X X
+:lookup:`contains <gis-contains>` X X X X
+:lookup:`contains_properly` X
+:lookup:`coveredby` X X
+:lookup:`covers` X X
+:lookup:`crosses` X X
+:lookup:`disjoint` X X X X
+:lookup:`distance_gt` X X X
+:lookup:`distance_gte` X X X
+:lookup:`distance_lt` X X X
+:lookup:`distance_lte` X X X
+:lookup:`dwithin` X X
+:lookup:`equals` X X X X
+:lookup:`exact` X X X X
+:lookup:`intersects` X X X X
+:lookup:`overlaps` X X X X
+:lookup:`relate` X X X
+:lookup:`same_as` X X X X
+:lookup:`touches` X X X X
+:lookup:`within` X X X X
+:lookup:`left` X
+:lookup:`right` X
+:lookup:`overlaps_left` X
+:lookup:`overlaps_right` X
+:lookup:`overlaps_above` X
+:lookup:`overlaps_below` X
+:lookup:`strictly_above` X
+:lookup:`strictly_below` X
+================================= ========= ======== ============ ==========
+
+.. _geoqueryset-method-compatibility:
+
+``GeoQuerySet`` Methods
+-----------------------
+The following table provides a summary of what :class:`GeoQuerySet` methods
+are available on each spatial backend. Please note that MySQL does not
+support any of these methods, and is thus excluded from the table.
+
+==================================== ======= ====== ==========
+Method PostGIS Oracle SpatiaLite
+==================================== ======= ====== ==========
+:meth:`GeoQuerySet.area` X X X
+:meth:`GeoQuerySet.centroid` X X X
+:meth:`GeoQuerySet.collect` X
+:meth:`GeoQuerySet.difference` X X X
+:meth:`GeoQuerySet.distance` X X X
+:meth:`GeoQuerySet.envelope` X X
+:meth:`GeoQuerySet.extent` X X
+:meth:`GeoQuerySet.extent3d` X
+:meth:`GeoQuerySet.force_rhr` X
+:meth:`GeoQuerySet.geohash` X
+:meth:`GeoQuerySet.geojson` X
+:meth:`GeoQuerySet.gml` X X
+:meth:`GeoQuerySet.intersection` X X X
+:meth:`GeoQuerySet.kml` X
+:meth:`GeoQuerySet.length` X X X
+:meth:`GeoQuerySet.make_line` X
+:meth:`GeoQuerySet.mem_size` X
+:meth:`GeoQuerySet.num_geom` X X X
+:meth:`GeoQuerySet.num_points` X X X
+:meth:`GeoQuerySet.perimeter` X X
+:meth:`GeoQuerySet.point_on_surface` X X X
+:meth:`GeoQuerySet.reverse_geom` X X
+:meth:`GeoQuerySet.scale` X X
+:meth:`GeoQuerySet.snap_to_grid` X
+:meth:`GeoQuerySet.svg` X X
+:meth:`GeoQuerySet.sym_difference` X X X
+:meth:`GeoQuerySet.transform` X X X
+:meth:`GeoQuerySet.translate` X X
+:meth:`GeoQuerySet.union` X X X
+:meth:`GeoQuerySet.unionagg` X X X
+==================================== ======= ====== ==========
+
+.. rubric:: Footnotes
+.. [#fnwkt] *See* Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p. 3-11 (SQL Textual Representation of Geometry).
+.. [#fnewkb] *See* `PostGIS EWKB, EWKT and Canonical Forms <http://postgis.refractions.net/documentation/manual-1.5/ch04.html#EWKB_EWKT>`_, PostGIS documentation at Ch. 4.1.2.
+.. [#fngeojson] *See* Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, `The GeoJSON Format Specification <http://geojson.org/geojson-spec.html>`_, Revision 1.0 (June 16, 2008).
+.. [#fndistsphere14] *See* `PostGIS 1.4 documentation <http://postgis.refractions.net/documentation/manual-1.4/ST_Distance_Sphere.html>`_ on ``ST_distance_sphere``.
+.. [#fndistsphere15] *See* `PostGIS 1.5 documentation <http://postgis.refractions.net/documentation/manual-1.5/ST_Distance_Sphere.html>`_ on ``ST_distance_sphere``.
+.. [#fnmysqlidx] *See* `Creating Spatial Indexes <http://dev.mysql.com/doc/refman/5.1/en/creating-spatial-indexes.html>`_
+ in the MySQL 5.1 Reference Manual:
+
+ For MyISAM tables, ``SPATIAL INDEX`` creates an R-tree index. For storage
+ engines that support nonspatial indexing of spatial columns, the engine
+ creates a B-tree index. A B-tree index on spatial values will be useful
+ for exact-value lookups, but not for range scans.
+
+.. [#] Refer :ref:`mysql-spatial-limitations` section for more details.