summaryrefslogtreecommitdiff
path: root/parts/django/docs/ref/contrib/gis/tutorial.txt
diff options
context:
space:
mode:
authorNishanth Amuluru2011-01-11 22:41:51 +0530
committerNishanth Amuluru2011-01-11 22:41:51 +0530
commitb03203c8cb991c16ac8a3d74c8c4078182d0bb48 (patch)
tree7cf13b2deacbfaaec99edb431b83ddd5ea734a52 /parts/django/docs/ref/contrib/gis/tutorial.txt
parent0c50203cd9eb94b819883c3110922e873f003138 (diff)
downloadpytask-b03203c8cb991c16ac8a3d74c8c4078182d0bb48.tar.gz
pytask-b03203c8cb991c16ac8a3d74c8c4078182d0bb48.tar.bz2
pytask-b03203c8cb991c16ac8a3d74c8c4078182d0bb48.zip
removed all the buildout files
Diffstat (limited to 'parts/django/docs/ref/contrib/gis/tutorial.txt')
-rw-r--r--parts/django/docs/ref/contrib/gis/tutorial.txt758
1 files changed, 0 insertions, 758 deletions
diff --git a/parts/django/docs/ref/contrib/gis/tutorial.txt b/parts/django/docs/ref/contrib/gis/tutorial.txt
deleted file mode 100644
index 9deeb78..0000000
--- a/parts/django/docs/ref/contrib/gis/tutorial.txt
+++ /dev/null
@@ -1,758 +0,0 @@
-==================
-GeoDjango Tutorial
-==================
-
-Introduction
-============
-
-GeoDjango is an add-on for Django that turns it into a world-class geographic
-Web framework. GeoDjango strives to make at as simple as possible to create
-geographic Web applications, like location-based services. Some features include:
-
-* Django model fields for `OGC`_ geometries.
-* Extensions to Django's ORM for the querying and manipulation of spatial data.
-* Loosely-coupled, high-level Python interfaces for GIS geometry operations and
- data formats.
-* Editing of geometry fields inside the admin.
-
-This tutorial assumes a familiarity with Django; thus, if you're brand new to
-Django please read through the :doc:`regular tutorial </intro/tutorial01>` to introduce
-yourself with basic Django concepts.
-
-.. note::
-
- GeoDjango has special prerequisites overwhat is required by Django --
- please consult the :ref:`installation documentation <ref-gis-install>`
- for more details.
-
-This tutorial will guide you through the creation of a geographic Web
-application for viewing the `world borders`_. [#]_ Some of the code
-used in this tutorial is taken from and/or inspired by the `GeoDjango
-basic apps`_ project. [#]_
-
-.. note::
-
- Proceed through the tutorial sections sequentially for step-by-step
- instructions.
-
-.. _OGC: http://www.opengeospatial.org/
-.. _world borders: http://thematicmapping.org/downloads/world_borders.php
-.. _GeoDjango basic apps: http://code.google.com/p/geodjango-basic-apps/
-
-Setting Up
-==========
-
-Create a Spatial Database
--------------------------
-
-.. note::
-
- MySQL and Oracle users can skip this section because spatial types
- are already built into the database.
-
-First, a spatial database needs to be created for our project. If using
-PostgreSQL and PostGIS, then the following commands will
-create the database from a :ref:`spatial database template <spatialdb_template>`::
-
- $ createdb -T template_postgis geodjango
-
-.. note::
-
- This command must be issued by a database user that has permissions to
- create a database. Here is an example set of commands to create such
- a user::
-
- $ sudo su - postgres
- $ createuser --createdb geo
- $ exit
-
- Replace ``geo`` to correspond to the system login user name will be
- connecting to the database. For example, ``johndoe`` if that is the
- system user that will be running GeoDjango.
-
-Users of SQLite and SpatiaLite should consult the instructions on how
-to create a :ref:`SpatiaLite database <create_spatialite_db>`.
-
-Create GeoDjango Project
-------------------------
-
-Use the ``django-admin.py`` script like normal to create a ``geodjango`` project::
-
- $ django-admin.py startproject geodjango
-
-With the project initialized, now create a ``world`` Django application within
-the ``geodjango`` project::
-
- $ cd geodjango
- $ python manage.py startapp world
-
-Configure ``settings.py``
--------------------------
-
-The ``geodjango`` project settings are stored in the ``settings.py`` file. Edit
-the database connection settings appropriately::
-
- DATABASES = {
- 'default': {
- 'ENGINE': 'django.contrib.gis.db.backends.postgis',
- 'NAME': 'geodjango',
- 'USER': 'geo',
- }
- }
-
-.. note::
-
- These database settings are for Django 1.2 and above.
-
-In addition, modify the :setting:`INSTALLED_APPS` setting to include
-:mod:`django.contrib.admin`, :mod:`django.contrib.gis`,
-and ``world`` (our newly created application)::
-
- INSTALLED_APPS = (
- 'django.contrib.auth',
- 'django.contrib.contenttypes',
- 'django.contrib.sessions',
- 'django.contrib.sites',
- 'django.contrib.admin',
- 'django.contrib.gis',
- 'world'
- )
-
-Geographic Data
-===============
-
-.. _worldborders:
-
-World Borders
--------------
-
-The world borders data is available in this `zip file`__. Create a data directory
-in the ``world`` application, download the world borders data, and unzip.
-On GNU/Linux platforms the following commands should do it::
-
- $ mkdir world/data
- $ cd world/data
- $ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
- $ unzip TM_WORLD_BORDERS-0.3.zip
- $ cd ../..
-
-The world borders ZIP file contains a set of data files collectively known as
-an `ESRI Shapefile`__, one of the most popular geospatial data formats. When
-unzipped the world borders data set includes files with the following extensions:
-
-* ``.shp``: Holds the vector data for the world borders geometries.
-* ``.shx``: Spatial index file for geometries stored in the ``.shp``.
-* ``.dbf``: Database file for holding non-geometric attribute data
- (e.g., integer and character fields).
-* ``.prj``: Contains the spatial reference information for the geographic
- data stored in the shapefile.
-
-__ http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
-__ http://en.wikipedia.org/wiki/Shapefile
-
-Use ``ogrinfo`` to examine spatial data
----------------------------------------
-
-The GDAL ``ogrinfo`` utility is excellent for examining metadata about
-shapefiles (or other vector data sources)::
-
- $ ogrinfo world/data/TM_WORLD_BORDERS-0.3.shp
- INFO: Open of `world/data/TM_WORLD_BORDERS-0.3.shp'
- using driver `ESRI Shapefile' successful.
- 1: TM_WORLD_BORDERS-0.3 (Polygon)
-
-Here ``ogrinfo`` is telling us that the shapefile has one layer, and that
-layer contains polygon data. To find out more we'll specify the layer name
-and use the ``-so`` option to get only important summary information::
-
- $ ogrinfo -so world/data/TM_WORLD_BORDERS-0.3.shp TM_WORLD_BORDERS-0.3
- INFO: Open of `world/data/TM_WORLD_BORDERS-0.3.shp'
- using driver `ESRI Shapefile' successful.
-
- Layer name: TM_WORLD_BORDERS-0.3
- Geometry: Polygon
- Feature Count: 246
- Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)
- Layer SRS WKT:
- GEOGCS["GCS_WGS_1984",
- DATUM["WGS_1984",
- SPHEROID["WGS_1984",6378137.0,298.257223563]],
- PRIMEM["Greenwich",0.0],
- UNIT["Degree",0.0174532925199433]]
- FIPS: String (2.0)
- ISO2: String (2.0)
- ISO3: String (3.0)
- UN: Integer (3.0)
- NAME: String (50.0)
- AREA: Integer (7.0)
- POP2005: Integer (10.0)
- REGION: Integer (3.0)
- SUBREGION: Integer (3.0)
- LON: Real (8.3)
- LAT: Real (7.3)
-
-This detailed summary information tells us the number of features in the layer
-(246), the geographical extent, the spatial reference system ("SRS WKT"),
-as well as detailed information for each attribute field. For example,
-``FIPS: String (2.0)`` indicates that there's a ``FIPS`` character field
-with a maximum length of 2; similarly, ``LON: Real (8.3)`` is a floating-point
-field that holds a maximum of 8 digits up to three decimal places. Although
-this information may be found right on the `world borders`_ Web site, this shows
-you how to determine this information yourself when such metadata is not
-provided.
-
-Geographic Models
-=================
-
-Defining a Geographic Model
----------------------------
-
-Now that we've examined our world borders data set using ``ogrinfo``, we can
-create a GeoDjango model to represent this data::
-
- from django.contrib.gis.db import models
-
- class WorldBorders(models.Model):
- # Regular Django fields corresponding to the attributes in the
- # world borders shapefile.
- name = models.CharField(max_length=50)
- area = models.IntegerField()
- pop2005 = models.IntegerField('Population 2005')
- fips = models.CharField('FIPS Code', max_length=2)
- iso2 = models.CharField('2 Digit ISO', max_length=2)
- iso3 = models.CharField('3 Digit ISO', max_length=3)
- un = models.IntegerField('United Nations Code')
- region = models.IntegerField('Region Code')
- subregion = models.IntegerField('Sub-Region Code')
- lon = models.FloatField()
- lat = models.FloatField()
-
- # GeoDjango-specific: a geometry field (MultiPolygonField), and
- # overriding the default manager with a GeoManager instance.
- mpoly = models.MultiPolygonField()
- objects = models.GeoManager()
-
- # So the model is pluralized correctly in the admin.
- class Meta:
- verbose_name_plural = "World Borders"
-
- # Returns the string representation of the model.
- def __unicode__(self):
- return self.name
-
-Two important things to note:
-
-1. The ``models`` module is imported from :mod:`django.contrib.gis.db`.
-2. The model overrides its default manager with
- :class:`~django.contrib.gis.db.models.GeoManager`; this is *required*
- to perform spatial queries.
-
-When declaring a geometry field on your model the default spatial reference system
-is WGS84 (meaning the `SRID`__ is 4326) -- in other words, the field coordinates are in
-longitude/latitude pairs in units of degrees. If you want the coordinate system to be
-different, then SRID of the geometry field may be customized by setting the ``srid``
-with an integer corresponding to the coordinate system of your choice.
-
-__ http://en.wikipedia.org/wiki/SRID
-
-Run ``syncdb``
---------------
-
-After you've defined your model, it needs to be synced with the spatial database.
-First, let's look at the SQL that will generate the table for the ``WorldBorders``
-model::
-
- $ python manage.py sqlall world
-
-This management command should produce the following output::
-
- BEGIN;
- CREATE TABLE "world_worldborders" (
- "id" serial NOT NULL PRIMARY KEY,
- "name" varchar(50) NOT NULL,
- "area" integer NOT NULL,
- "pop2005" integer NOT NULL,
- "fips" varchar(2) NOT NULL,
- "iso2" varchar(2) NOT NULL,
- "iso3" varchar(3) NOT NULL,
- "un" integer NOT NULL,
- "region" integer NOT NULL,
- "subregion" integer NOT NULL,
- "lon" double precision NOT NULL,
- "lat" double precision NOT NULL
- )
- ;
- SELECT AddGeometryColumn('world_worldborders', 'mpoly', 4326, 'MULTIPOLYGON', 2);
- ALTER TABLE "world_worldborders" ALTER "mpoly" SET NOT NULL;
- CREATE INDEX "world_worldborders_mpoly_id" ON "world_worldborders" USING GIST ( "mpoly" GIST_GEOMETRY_OPS );
- COMMIT;
-
-If satisfied, you may then create this table in the database by running the
-``syncdb`` management command::
-
- $ python manage.py syncdb
- Creating table world_worldborders
- Installing custom SQL for world.WorldBorders model
-
-The ``syncdb`` command may also prompt you to create an admin user; go ahead and
-do so (not required now, may be done at any point in the future using the
-``createsuperuser`` management command).
-
-Importing Spatial Data
-======================
-
-This section will show you how to take the data from the world borders
-shapefile and import it into GeoDjango models using the :ref:`ref-layermapping`.
-There are many different different ways to import data in to a
-spatial database -- besides the tools included within GeoDjango, you
-may also use the following to populate your spatial database:
-
-* `ogr2ogr`_: Command-line utility, included with GDAL, that
- supports loading a multitude of vector data formats into
- the PostGIS, MySQL, and Oracle spatial databases.
-* `shp2pgsql`_: This utility is included with PostGIS and only supports
- ESRI shapefiles.
-
-.. _ogr2ogr: http://www.gdal.org/ogr2ogr.html
-.. _shp2pgsql: http://postgis.refractions.net/documentation/manual-1.5/ch04.html#shp2pgsql_usage
-
-.. _gdalinterface:
-
-GDAL Interface
---------------
-
-Earlier we used the the ``ogrinfo`` to explore the contents of the world borders
-shapefile. Included within GeoDjango is an interface to GDAL's powerful OGR
-library -- in other words, you'll be able explore all the vector data sources
-that OGR supports via a Pythonic API.
-
-First, invoke the Django shell::
-
- $ python manage.py shell
-
-If the :ref:`worldborders` data was downloaded like earlier in the
-tutorial, then we can determine the path using Python's built-in
-``os`` module::
-
- >>> import os
- >>> from geodjango import world
- >>> world_shp = os.path.abspath(os.path.join(os.path.dirname(world.__file__),
- ... 'data/TM_WORLD_BORDERS-0.3.shp'))
-
-Now, the world borders shapefile may be opened using GeoDjango's
-:class:`~django.contrib.gis.gdal.DataSource` interface::
-
- >>> from django.contrib.gis.gdal import *
- >>> ds = DataSource(world_shp)
- >>> print ds
- / ... /geodjango/world/data/TM_WORLD_BORDERS-0.3.shp (ESRI Shapefile)
-
-Data source objects can have different layers of geospatial features; however,
-shapefiles are only allowed to have one layer::
-
- >>> print len(ds)
- 1
- >>> lyr = ds[0]
- >>> print lyr
- TM_WORLD_BORDERS-0.3
-
-You can see what the geometry type of the layer is and how many features it
-contains::
-
- >>> print lyr.geom_type
- Polygon
- >>> print len(lyr)
- 246
-
-.. note::
-
- Unfortunately the shapefile data format does not allow for greater
- specificity with regards to geometry types. This shapefile, like
- many others, actually includes ``MultiPolygon`` geometries in its
- features. You need to watch out for this when creating your models
- as a GeoDjango ``PolygonField`` will not accept a ``MultiPolygon``
- type geometry -- thus a ``MultiPolygonField`` is used in our model's
- definition instead.
-
-The :class:`~django.contrib.gis.gdal.Layer` may also have a spatial reference
-system associated with it -- if it does, the ``srs`` attribute will return a
-:class:`~django.contrib.gis.gdal.SpatialReference` object::
-
- >>> srs = lyr.srs
- >>> print srs
- GEOGCS["GCS_WGS_1984",
- DATUM["WGS_1984",
- SPHEROID["WGS_1984",6378137.0,298.257223563]],
- PRIMEM["Greenwich",0.0],
- UNIT["Degree",0.0174532925199433]]
- >>> srs.proj4 # PROJ.4 representation
- '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs '
-
-Here we've noticed that the shapefile is in the popular WGS84 spatial reference
-system -- in other words, the data uses units of degrees longitude and latitude.
-
-In addition, shapefiles also support attribute fields that may contain
-additional data. Here are the fields on the World Borders layer:
-
- >>> print lyr.fields
- ['FIPS', 'ISO2', 'ISO3', 'UN', 'NAME', 'AREA', 'POP2005', 'REGION', 'SUBREGION', 'LON', 'LAT']
-
-Here we are examining the OGR types (e.g., whether a field is an integer or
-a string) associated with each of the fields:
-
- >>> [fld.__name__ for fld in lyr.field_types]
- ['OFTString', 'OFTString', 'OFTString', 'OFTInteger', 'OFTString', 'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTReal', 'OFTReal']
-
-You can iterate over each feature in the layer and extract information from both
-the feature's geometry (accessed via the ``geom`` attribute) as well as the
-feature's attribute fields (whose **values** are accessed via ``get()``
-method)::
-
- >>> for feat in lyr:
- ... print feat.get('NAME'), feat.geom.num_points
- ...
- Guernsey 18
- Jersey 26
- South Georgia South Sandwich Islands 338
- Taiwan 363
-
-:class:`~django.contrib.gis.gdal.Layer` objects may be sliced::
-
- >>> lyr[0:2]
- [<django.contrib.gis.gdal.feature.Feature object at 0x2f47690>, <django.contrib.gis.gdal.feature.Feature object at 0x2f47650>]
-
-And individual features may be retrieved by their feature ID::
-
- >>> feat = lyr[234]
- >>> print feat.get('NAME')
- San Marino
-
-Here the boundary geometry for San Marino is extracted and looking
-exported to WKT and GeoJSON::
-
- >>> geom = feat.geom
- >>> print geom.wkt
- POLYGON ((12.415798 43.957954,12.450554 ...
- >>> print geom.json
- { "type": "Polygon", "coordinates": [ [ [ 12.415798, 43.957954 ], [ 12.450554, 43.979721 ], ...
-
-
-``LayerMapping``
-----------------
-
-We're going to dive right in -- create a file called ``load.py`` inside the
-``world`` application, and insert the following::
-
- import os
- from django.contrib.gis.utils import LayerMapping
- from models import WorldBorders
-
- world_mapping = {
- 'fips' : 'FIPS',
- 'iso2' : 'ISO2',
- 'iso3' : 'ISO3',
- 'un' : 'UN',
- 'name' : 'NAME',
- 'area' : 'AREA',
- 'pop2005' : 'POP2005',
- 'region' : 'REGION',
- 'subregion' : 'SUBREGION',
- 'lon' : 'LON',
- 'lat' : 'LAT',
- 'mpoly' : 'MULTIPOLYGON',
- }
-
- world_shp = os.path.abspath(os.path.join(os.path.dirname(__file__), 'data/TM_WORLD_BORDERS-0.3.shp'))
-
- def run(verbose=True):
- lm = LayerMapping(WorldBorders, world_shp, world_mapping,
- transform=False, encoding='iso-8859-1')
-
- lm.save(strict=True, verbose=verbose)
-
-A few notes about what's going on:
-
-* Each key in the ``world_mapping`` dictionary corresponds to a field in the
- ``WorldBorders`` model, and the value is the name of the shapefile field
- that data will be loaded from.
-* The key ``mpoly`` for the geometry field is ``MULTIPOLYGON``, the
- geometry type we wish to import as. Even if simple polygons are encountered
- in the shapefile they will automatically be converted into collections prior
- to insertion into the database.
-* The path to the shapefile is not absolute -- in other words, if you move the
- ``world`` application (with ``data`` subdirectory) to a different location,
- then the script will still work.
-* The ``transform`` keyword is set to ``False`` because the data in the
- shapefile does not need to be converted -- it's already in WGS84 (SRID=4326).
-* The ``encoding`` keyword is set to the character encoding of string values in
- the shapefile. This ensures that string values are read and saved correctly
- from their original encoding system.
-
-Afterwards, invoke the Django shell from the ``geodjango`` project directory::
-
- $ python manage.py shell
-
-Next, import the ``load`` module, call the ``run`` routine, and watch ``LayerMapping``
-do the work::
-
- >>> from world import load
- >>> load.run()
-
-
-.. _ogrinspect-intro:
-
-Try ``ogrinspect``
-------------------
-Now that you've seen how to define geographic models and import data with the
-:ref:`ref-layermapping`, it's possible to further automate this process with
-use of the :djadmin:`ogrinspect` management command. The :djadmin:`ogrinspect`
-command introspects a GDAL-supported vector data source (e.g., a shapefile) and
-generates a model definition and ``LayerMapping`` dictionary automatically.
-
-The general usage of the command goes as follows::
-
- $ python manage.py ogrinspect [options] <data_source> <model_name> [options]
-
-Where ``data_source`` is the path to the GDAL-supported data source and
-``model_name`` is the name to use for the model. Command-line options may
-be used to further define how the model is generated.
-
-For example, the following command nearly reproduces the ``WorldBorders`` model
-and mapping dictionary created above, automatically::
-
- $ python manage.py ogrinspect world/data/TM_WORLD_BORDERS-0.3.shp WorldBorders --srid=4326 --mapping --multi
-
-A few notes about the command-line options given above:
-
-* The ``--srid=4326`` option sets the SRID for the geographic field.
-* The ``--mapping`` option tells ``ogrinspect`` to also generate a
- mapping dictionary for use with :class:`~django.contrib.gis.utils.LayerMapping`.
-* The ``--multi`` option is specified so that the geographic field is a
- :class:`~django.contrib.gis.db.models.MultiPolygonField` instead of just a
- :class:`~django.contrib.gis.db.models.PolygonField`.
-
-The command produces the following output, which may be copied
-directly into the ``models.py`` of a GeoDjango application::
-
- # This is an auto-generated Django model module created by ogrinspect.
- from django.contrib.gis.db import models
-
- class WorldBorders(models.Model):
- fips = models.CharField(max_length=2)
- iso2 = models.CharField(max_length=2)
- iso3 = models.CharField(max_length=3)
- un = models.IntegerField()
- name = models.CharField(max_length=50)
- area = models.IntegerField()
- pop2005 = models.IntegerField()
- region = models.IntegerField()
- subregion = models.IntegerField()
- lon = models.FloatField()
- lat = models.FloatField()
- geom = models.MultiPolygonField(srid=4326)
- objects = models.GeoManager()
-
- # Auto-generated `LayerMapping` dictionary for WorldBorders model
- worldborders_mapping = {
- 'fips' : 'FIPS',
- 'iso2' : 'ISO2',
- 'iso3' : 'ISO3',
- 'un' : 'UN',
- 'name' : 'NAME',
- 'area' : 'AREA',
- 'pop2005' : 'POP2005',
- 'region' : 'REGION',
- 'subregion' : 'SUBREGION',
- 'lon' : 'LON',
- 'lat' : 'LAT',
- 'geom' : 'MULTIPOLYGON',
- }
-
-Spatial Queries
-===============
-
-Spatial Lookups
----------------
-GeoDjango extends the Django ORM and allows the use of spatial lookups.
-Let's do an example where we find the ``WorldBorder`` model that contains
-a point. First, fire up the management shell::
-
- $ python manage.py shell
-
-Now, define a point of interest [#]_::
-
- >>> pnt_wkt = 'POINT(-95.3385 29.7245)'
-
-The ``pnt_wkt`` string represents the point at -95.3385 degrees longitude,
-and 29.7245 degrees latitude. The geometry is in a format known as
-Well Known Text (WKT), an open standard issued by the Open Geospatial
-Consortium (OGC). [#]_ Import the ``WorldBorders`` model, and perform
-a ``contains`` lookup using the ``pnt_wkt`` as the parameter::
-
- >>> from world.models import WorldBorders
- >>> qs = WorldBorders.objects.filter(mpoly__contains=pnt_wkt)
- >>> qs
- [<WorldBorders: United States>]
-
-Here we retrieved a ``GeoQuerySet`` that has only one model: the one
-for the United States (which is what we would expect). Similarly,
-a :ref:`GEOS geometry object <ref-geos>` may also be used -- here the ``intersects``
-spatial lookup is combined with the ``get`` method to retrieve
-only the ``WorldBorders`` instance for San Marino instead of a queryset::
-
- >>> from django.contrib.gis.geos import Point
- >>> pnt = Point(12.4604, 43.9420)
- >>> sm = WorldBorders.objects.get(mpoly__intersects=pnt)
- >>> sm
- <WorldBorders: San Marino>
-
-The ``contains`` and ``intersects`` lookups are just a subset of what's
-available -- the :ref:`ref-gis-db-api` documentation has more.
-
-Automatic Spatial Transformations
----------------------------------
-When querying the spatial database GeoDjango automatically transforms
-geometries if they're in a different coordinate system. In the following
-example, the coordinate will be expressed in terms of `EPSG SRID 32140`__,
-a coordinate system specific to south Texas **only** and in units of
-**meters** and not degrees::
-
- >>> from django.contrib.gis.geos import *
- >>> pnt = Point(954158.1, 4215137.1, srid=32140)
-
-Note that ``pnt`` may also constructed with EWKT, an "extended" form of
-WKT that includes the SRID::
-
- >>> pnt = GEOSGeometry('SRID=32140;POINT(954158.1 4215137.1)')
-
-When using GeoDjango's ORM, it will automatically wrap geometry values
-in transformation SQL, allowing the developer to work at a higher level
-of abstraction::
-
- >>> qs = WorldBorders.objects.filter(mpoly__intersects=pnt)
- >>> qs.query.as_sql() # Generating the SQL
- ('SELECT "world_worldborders"."id", "world_worldborders"."name", "world_worldborders"."area",
- "world_worldborders"."pop2005", "world_worldborders"."fips", "world_worldborders"."iso2",
- "world_worldborders"."iso3", "world_worldborders"."un", "world_worldborders"."region",
- "world_worldborders"."subregion", "world_worldborders"."lon", "world_worldborders"."lat",
- "world_worldborders"."mpoly" FROM "world_worldborders"
- WHERE ST_Intersects("world_worldborders"."mpoly", ST_Transform(%s, 4326))',
- (<django.contrib.gis.db.backend.postgis.adaptor.PostGISAdaptor object at 0x25641b0>,))
- >>> qs # printing evaluates the queryset
- [<WorldBorders: United States>]
-
-__ http://spatialreference.org/ref/epsg/32140/
-
-Lazy Geometries
----------------
-Geometries come to GeoDjango in a standardized textual representation. Upon
-access of the geometry field, GeoDjango creates a `GEOS geometry object <ref-geos>`,
-exposing powerful functionality, such as serialization properties for
-popular geospatial formats::
-
- >>> sm = WorldBorders.objects.get(name='San Marino')
- >>> sm.mpoly
- <MultiPolygon object at 0x24c6798>
- >>> sm.mpoly.wkt # WKT
- MULTIPOLYGON (((12.4157980000000006 43.9579540000000009, 12.4505540000000003 43.9797209999999978, ...
- >>> sm.mpoly.wkb # WKB (as Python binary buffer)
- <read-only buffer for 0x1fe2c70, size -1, offset 0 at 0x2564c40>
- >>> sm.mpoly.geojson # GeoJSON (requires GDAL)
- '{ "type": "MultiPolygon", "coordinates": [ [ [ [ 12.415798, 43.957954 ], [ 12.450554, 43.979721 ], ...
-
-This includes access to all of the advanced geometric operations provided by
-the GEOS library::
-
- >>> pnt = Point(12.4604, 43.9420)
- >>> sm.mpoly.contains(pnt)
- True
- >>> pnt.contains(sm.mpoly)
- False
-
-``GeoQuerySet`` Methods
------------------------
-
-
-Putting your data on the map
-============================
-
-Google
-------
-
-Geographic Admin
-----------------
-
-GeoDjango extends :doc:`Django's admin application </ref/contrib/admin/index>`
-to enable support for editing geometry fields.
-
-Basics
-^^^^^^
-
-GeoDjango also supplements the Django admin by allowing users to create
-and modify geometries on a JavaScript slippy map (powered by `OpenLayers`_).
-
-Let's dive in again -- create a file called ``admin.py`` inside the
-``world`` application, and insert the following::
-
- from django.contrib.gis import admin
- from models import WorldBorders
-
- admin.site.register(WorldBorders, admin.GeoModelAdmin)
-
-Next, edit your ``urls.py`` in the ``geodjango`` project folder to look
-as follows::
-
- from django.conf.urls.defaults import *
- from django.contrib.gis import admin
-
- admin.autodiscover()
-
- urlpatterns = patterns('',
- (r'^admin/', include(admin.site.urls)),
- )
-
-Start up the Django development server::
-
- $ python manage.py runserver
-
-Finally, browse to ``http://localhost:8000/admin/``, and log in with the admin
-user created after running ``syncdb``. Browse to any of the ``WorldBorders``
-entries -- the borders may be edited by clicking on a polygon and dragging
-the vertexes to the desired position.
-
-.. _OpenLayers: http://openlayers.org/
-.. _Open Street Map: http://openstreetmap.org/
-.. _Vector Map Level 0: http://earth-info.nga.mil/publications/vmap0.html
-.. _Metacarta: http://metacarta.com
-
-.. _osmgeoadmin-intro:
-
-``OSMGeoAdmin``
-^^^^^^^^^^^^^^^
-
-With the :class:`~django.contrib.gis.admin.OSMGeoAdmin`, GeoDjango uses
-a `Open Street Map`_ layer in the admin.
-This provides more context (including street and thoroughfare details) than
-available with the :class:`~django.contrib.gis.admin.GeoModelAdmin`
-(which uses the `Vector Map Level 0`_ WMS data set hosted at `Metacarta`_).
-
-First, there are some important requirements and limitations:
-
-* :class:`~django.contrib.gis.admin.OSMGeoAdmin` requires that the
- :ref:`spherical mercator projection be added <addgoogleprojection>`
- to the to be added to the ``spatial_ref_sys`` table (PostGIS 1.3 and
- below, only).
-* The PROJ.4 datum shifting files must be installed (see the
- :ref:`PROJ.4 installation instructions <proj4>` for more details).
-
-If you meet these requirements, then just substitute in the ``OSMGeoAdmin``
-option class in your ``admin.py`` file::
-
- admin.site.register(WorldBorders, admin.OSMGeoAdmin)
-
-.. rubric:: Footnotes
-
-.. [#] Special thanks to Bjørn Sandvik of `thematicmapping.org <http://thematicmapping.org>`_ for providing and maintaining this data set.
-.. [#] GeoDjango basic apps was written by Dane Springmeyer, Josh Livni, and Christopher Schmidt.
-.. [#] Here the point is for the `University of Houston Law Center <http://www.law.uh.edu/>`_ .
-.. [#] Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, Document 99-049.