1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
#include <volk/volk_runtime.h>
#include <volk/volk.h>
#include <qa_8sc_multiply_conjugate_32fc_aligned16.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define assertcomplexEqual(expected, actual, delta) \
CPPUNIT_ASSERT_DOUBLES_EQUAL (std::real(expected), std::real(actual), fabs(std::real(expected)) * delta); \
CPPUNIT_ASSERT_DOUBLES_EQUAL (std::imag(expected), std::imag(actual), fabs(std::imag(expected))* delta);
#define ERR_DELTA (1e-4)
#ifndef LV_HAVE_SSE4_1
void qa_8sc_multiply_conjugate_32fc_aligned16::t1() {
printf("sse4.1 not available... no test performed\n");
}
#else
void qa_8sc_multiply_conjugate_32fc_aligned16::t1() {
volk_runtime_init();
const int vlen = 2046;
const int ITERS = 100000;
volk_environment_init();
int ret;
clock_t start, end;
double total;
std::complex<int8_t>* input;
std::complex<int8_t>* taps;
std::complex<float>* result_generic;
std::complex<float>* result_sse4_1;
int i;
int8_t* inputInt8_T;
int8_t* tapsInt8_T;
ret = posix_memalign((void**)&input, 16, vlen*2*sizeof(int8_t));
ret = posix_memalign((void**)&taps, 16, vlen*2*sizeof(int8_t));
ret = posix_memalign((void**)&result_generic, 16, vlen*2*sizeof(float));
ret = posix_memalign((void**)&result_sse4_1, 16, vlen*2*sizeof(float));
inputInt8_T = (int8_t*)input;
tapsInt8_T = (int8_t*)taps;
for(int i = 0; i < vlen*2; ++i) {
inputInt8_T[i] =((int8_t)((((float) (rand() - (RAND_MAX/2))) / static_cast<float>((RAND_MAX/2))) * 128.0));
tapsInt8_T[i] =((int8_t)((((float) (rand() - (RAND_MAX/2))) / static_cast<float>((RAND_MAX/2))) * 128.0));
}
printf("8sc_multiply_conjugate_32fc_aligned16\n");
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_8sc_multiply_conjugate_32fc_aligned16_manual(result_generic, (const std::complex<int8_t>*)input, (const std::complex<int8_t>*)taps, 32768.0, vlen, "generic");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("generic_time: %f\n", total);
start = clock();
for(int count = 0; count < ITERS; ++count) {
get_volk_runtime()->volk_8sc_multiply_conjugate_32fc_aligned16(result_sse4_1, (const std::complex<int8_t>*)input, (const std::complex<int8_t>*)taps, 32768.0, vlen);
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("sse4_1_time: %f\n", total);
for(i = 0; i < vlen; i++){
//printf("%d %d+%di %d+%di -> %e+%ei %e+%ei\n", i, std::real(input[i]), std::imag(input[i]), std::real(taps[i]), std::imag(taps[i]), std::real(result_generic[i]), std::imag(result_generic[i]), std::real(result_sse4_1[i]), std::imag(result_sse4_1[i]));
assertcomplexEqual(result_generic[i], result_sse4_1[i], ERR_DELTA);
}
free(input);
free(taps);
free(result_generic);
free(result_sse4_1);
}
#endif /*LV_HAVE_SSE4_1*/
|