1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
#include <volk/volk.h>
#include <qa_32fc_conjugate_dot_prod_aligned16.h>
#include <stdlib.h>
#include <math.h>
#define assertcomplexEqual(expected, actual, delta) \
CPPUNIT_ASSERT_DOUBLES_EQUAL (std::real(expected), std::real(actual), fabs(std::real(expected)) * delta); \
CPPUNIT_ASSERT_DOUBLES_EQUAL (std::imag(expected), std::imag(actual), fabs(std::imag(expected))* delta);
#define ERR_DELTA (1e-4)
//test for sse
#if LV_HAVE_SSE && LV_HAVE_64
static float uniform() {
return 2.0 * ((float) rand() / RAND_MAX - 0.5); // uniformly (-1, 1)
}
static void
random_floats (float *buf, unsigned n)
{
for (unsigned i = 0; i < n; i++)
buf[i] = uniform () * 32767;
}
void qa_32fc_conjugate_dot_prod_aligned16::t1() {
const int vlen = 789743;
volk_environment_init();
int ret;
std::complex<float>* input;
std::complex<float>* taps;
std::complex<float>* result_generic;
std::complex<float>* result;
ret = posix_memalign((void**)&input, 16, vlen << 3);
ret = posix_memalign((void**)&taps, 16, vlen << 3);
ret = posix_memalign((void**)&result_generic, 16, 8);
ret = posix_memalign((void**)&result, 16, 8);
result_generic[0] = std::complex<float>(0,0);
result[0] = std::complex<float>(0,0);
random_floats((float*)input, vlen * 2);
random_floats((float*)taps, vlen * 2);
volk_32fc_conjugate_dot_prod_aligned16_manual(result_generic, input, taps, vlen * 8, "generic");
volk_32fc_conjugate_dot_prod_aligned16_manual(result, input, taps, vlen * 8, "sse");
printf("32fc_conjugate_dot_prod_aligned16\n");
printf("generic: %f +i%f ... sse: %f +i%f\n", std::real(result_generic[0]), std::imag(result_generic[0]), std::real(result[0]), std::imag(result[0]));
assertcomplexEqual(result_generic[0], result[0], ERR_DELTA);
free(input);
free(taps);
free(result_generic);
free(result);
}
#elif LV_HAVE_SSE && LV_HAVE_32
static float uniform() {
return 2.0 * ((float) rand() / RAND_MAX - 0.5); // uniformly (-1, 1)
}
static void
random_floats (float *buf, unsigned n)
{
for (unsigned i = 0; i < n; i++)
buf[i] = uniform () * 32767;
}
void qa_32fc_conjugate_dot_prod_aligned16::t1() {
const int vlen = 789743;
volk_environment_init();
int ret;
std::complex<float>* input;
std::complex<float>* taps;
std::complex<float>* result_generic;
std::complex<float>* result;
ret = posix_memalign((void**)&input, 16, vlen << 3);
ret = posix_memalign((void**)&taps, 16, vlen << 3);
ret = posix_memalign((void**)&result_generic, 16, 8);
ret = posix_memalign((void**)&result, 16, 8);
result_generic[0] = std::complex<float>(0,0);
result[0] = std::complex<float>(0,0);
random_floats((float*)input, vlen * 2);
random_floats((float*)taps, vlen * 2);
volk_32fc_conjugate_dot_prod_aligned16_manual(result_generic, input, taps, vlen * 8, "generic");
volk_32fc_conjugate_dot_prod_aligned16_manual(result, input, taps, vlen * 8, "sse_32");
printf("32fc_conjugate_dot_prod_aligned16\n");
printf("generic: %f +i%f ... sse: %f +i%f\n", std::real(result_generic[0]), std::imag(result_generic[0]), std::real(result[0]), std::imag(result[0]));
assertcomplexEqual(result_generic[0], result[0], ERR_DELTA);
free(input);
free(taps);
free(result_generic);
free(result);
}
#else
void qa_32fc_conjugate_dot_prod_aligned16::t1() {
printf("sse not available... no test performed\n");
}
#endif /*LV_HAVE_SSE*/
|