1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
/* -*- c++ -*- */
/*
* Copyright 2010 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <volk/volk.h>
#include <qa_32f_sqrt_aligned16.h>
#include <volk/volk_32f_sqrt_aligned16.h>
#include <cstdlib>
//test for sse
#ifndef LV_HAVE_SSE
void qa_32f_sqrt_aligned16::t1() {
printf("sse not available... no test performed\n");
clock_t start, end;
double total;
const int vlen = 3201;
const int ITERS = 10000;
float input0[vlen] __attribute__ ((aligned (16)));
float output0[vlen] __attribute__ ((aligned (16)));
float output_known[vlen] __attribute__ ((aligned (16)));
// No reason to test negative numbers because they result in NaN.
for(int i = 0; i < vlen; ++i) {
input0[i] = ((float) (rand()) / static_cast<float>(RAND_MAX));
output_known[i] = sqrt(input0[i]);
}
printf("32f_sqrt_aligned\n");
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_32f_sqrt_aligned16_manual(output0, input0, vlen, "generic");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("generic_time: %f\n", total);
/*
for(int i = 0; i < 10; ++i) {
printf("inputs: %f\n", input0[i]);
printf("generic... %f == %f\n", output0[i], output_known[i]);
}
*/
for(int i = 0; i < vlen; ++i) {
CPPUNIT_ASSERT_DOUBLES_EQUAL(output0[i], output_known[i], fabs(output0[i])*1e-4);
}
}
#else
void qa_32f_sqrt_aligned16::t1() {
volk_environment_init();
clock_t start, end;
double total;
const int vlen = 3201;
const int ITERS = 100000;
float input0[vlen] __attribute__ ((aligned (16)));
float output0[vlen] __attribute__ ((aligned (16)));
float output01[vlen] __attribute__ ((aligned (16)));
// No reason to test negative numbers because they result in NaN.
for(int i = 0; i < vlen; ++i) {
input0[i] = ((float) (rand()) / static_cast<float>(RAND_MAX));
}
printf("32f_sqrt_aligned\n");
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_32f_sqrt_aligned16_manual(output0, input0, vlen, "generic");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("generic_time: %f\n", total);
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_32f_sqrt_aligned16_manual(output01, input0, vlen, "sse");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("sse_time: %f\n", total);
for(int i = 0; i < 1; ++i) {
//printf("inputs: %d, %d\n", input0[i*2], input0[i*2 + 1]);
//printf("generic... %d, ssse3... %d\n", output0[i], output1[i]);
}
for(int i = 0; i < vlen; ++i) {
//printf("%d...%d\n", output0[i], output01[i]);
CPPUNIT_ASSERT_DOUBLES_EQUAL(output0[i], output01[i], fabs(output0[i])*1e-4);
}
}
#endif
|