1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
#include <volk/volk.h>
#include <qa_16sc_magnitude_32f_aligned16.h>
#include <volk/volk_16sc_magnitude_32f_aligned16.h>
#include <cstdlib>
//test for sse
#ifndef LV_HAVE_SSE3
void qa_16sc_magnitude_32f_aligned16::t1() {
clock_t start, end;
double total;
const int vlen = 3201;
const int ITERS = 10000;
std::complex<int16_t> input0[vlen] __attribute__ ((aligned (16)));
float output_generic[vlen] __attribute__ ((aligned (16)));
float output_known[vlen] __attribute__ ((aligned (16)));
int16_t* inputLoad = (int16_t*)input0;
for(int i = 0; i < 2*vlen; ++i) {
inputLoad[i] = (int16_t)(rand() - (RAND_MAX/2));
}
printf("16sc_magnitude_32f_aligned\n");
float scale = 32768.0;
for(int i = 0; i < vlen; ++i) {
float re = (float)(input0[i].real())/scale;
float im = (float)(input0[i].imag())/scale;
output_known[i] = sqrt(re*re + im*im);
}
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_16sc_magnitude_32f_aligned16_manual(output_generic, input0, scale, vlen, "generic");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("generic_time: %f\n", total);
/*
for(int i = 0; i < 100; ++i) {
printf("inputs: %d + j%d\n", input0[i].real(), input0[i].imag());
printf("generic... %f == %f\n", output_generic[i], output_known[i]);
}
*/
for(int i = 0; i < vlen; ++i) {
//printf("%d...%d\n", output0[i], output01[i]);
CPPUNIT_ASSERT_DOUBLES_EQUAL(output_generic[i], output_known[i], fabs(output_generic[i])*1e-4);
}
}
#else
void qa_16sc_magnitude_32f_aligned16::t1() {
volk_environment_init();
clock_t start, end;
double total;
const int vlen = 3201;
const int ITERS = 100000;
std::complex<int16_t> input0[vlen] __attribute__ ((aligned (16)));
float output_generic[vlen] __attribute__ ((aligned (16)));
float output_sse[vlen] __attribute__ ((aligned (16)));
float output_sse3[vlen] __attribute__ ((aligned (16)));
int16_t* inputLoad = (int16_t*)input0;
for(int i = 0; i < 2*vlen; ++i) {
inputLoad[i] = (int16_t)(((float) (rand() - (RAND_MAX/2))) / static_cast<float>((RAND_MAX/2)));
}
printf("16sc_magnitude_32f_aligned\n");
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_16sc_magnitude_32f_aligned16_manual(output_generic, input0, 32768.0, vlen, "generic");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("generic_time: %f\n", total);
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_16sc_magnitude_32f_aligned16_manual(output_sse, input0, 32768.0, vlen, "sse");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("sse_time: %f\n", total);
start = clock();
for(int count = 0; count < ITERS; ++count) {
volk_16sc_magnitude_32f_aligned16_manual(output_sse3, input0, 32768.0, vlen, "sse3");
}
end = clock();
total = (double)(end-start)/(double)CLOCKS_PER_SEC;
printf("sse3_time: %f\n", total);
for(int i = 0; i < 1; ++i) {
//printf("inputs: %d, %d\n", input0[i*2], input0[i*2 + 1]);
//printf("generic... %d, ssse3... %d\n", output0[i], output1[i]);
}
for(int i = 0; i < vlen; ++i) {
//printf("%d...%d\n", output0[i], output01[i]);
CPPUNIT_ASSERT_DOUBLES_EQUAL(output_generic[i], output_sse[i], fabs(output_generic[i])*1e-4);
CPPUNIT_ASSERT_DOUBLES_EQUAL(output_generic[i], output_sse3[i], fabs(output_generic[i])*1e-4);
}
}
#endif
|