summaryrefslogtreecommitdiff
path: root/usrp2/fpga/serdes/serdes_rx.v
blob: efcd8af2c598b21e9b4d7be416fdfc3146a6feda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

// SERDES Interface

// LS-Byte is sent first, MS-Byte is second
// Invalid K Codes
//  K0.0  000-00000  Error detected
//  K31.7 111-11111  Loss of input signal

// Valid K Codes
//  K28.0 000-11100
//  K28.1 001-11100  Alternate COMMA?
//  K28.2 010-11100
//  K28.3 011-11100
//  K28.4 100-11100
//  K28.5 101-11100  Standard COMMA?
//  K28.6 110-11100
//  K28.7 111-11100  Bad COMMA?
//  K23.7 111-10111
//  K27.7 111-11011
//  K29.7 111-11101
//  K30.7 111-11110

module serdes_rx
  #(parameter FIFOSIZE = 9)
    (input clk,
     input rst,
     
     // RX HW Interface
     input ser_rx_clk,
     input [15:0] ser_r,
     input ser_rklsb,
     input ser_rkmsb,
     
     output [31:0] wr_dat_o,
     output wr_write_o,
     output wr_done_o,
     output wr_error_o,
     input wr_ready_i,
     input wr_full_i,

     output [15:0] fifo_space,
     output xon_rcvd, output xoff_rcvd,

     output [15:0] fifo_occupied, output fifo_full, output fifo_empty,
     output reg serdes_link_up,
     output [31:0] debug
     );

   localparam K_COMMA = 8'b101_11100;     // 0xBC K28.5
   localparam K_IDLE = 8'b001_11100;      // 0x3C K28.1
   localparam K_PKT_START = 8'b110_11100; // 0xDC K28.6
   localparam K_PKT_END = 8'b100_11100;   // 0x9C K28.4
   localparam K_XON = 8'b010_11100;       // 0x5C K28.2
   localparam K_XOFF = 8'b011_11100;      // 0x7C K28.3
   localparam K_LOS = 8'b111_11111;       // 0xFF K31.7
   localparam K_ERROR = 8'b000_00000;     // 0x00 K00.0
   localparam D_56 = 8'b110_00101;        // 0xC5 D05.6
   
   localparam IDLE = 3'd0;
   localparam FIRSTLINE1 = 3'd1;
   localparam FIRSTLINE2 = 3'd2;
   localparam PKT1 = 3'd3;
   localparam PKT2 = 3'd4;
   localparam CRC_CHECK = 3'd5;
   localparam ERROR = 3'd6;
   localparam DONE = 3'd7;
   
   wire [17:0] even_data;
   reg [17:0]  odd_data;
   wire [17:0] chosen_data;
   reg 	       odd;
   
   reg [31:0]  line_i;
   reg 	       sop_i, eop_i, error_i;
   wire        error_o, sop_o, eop_o, write, read, empty, full;
   reg [15:0]  halfline;
   reg [8:0]   holder;
   wire [31:0] line_o;
   
   reg [2:0]   state;

   reg [15:0]  CRC;
   wire [15:0] nextCRC;
   reg 	       write_d;

   oneshot_2clk rst_1s(.clk_in(clk),.in(rst),.clk_out(ser_rx_clk),.out(rst_rxclk));

   /*
   ss_rcvr #(.WIDTH(18)) ss_rcvr
     (.rxclk(ser_rx_clk),.sysclk(clk),.rst(rst),
      .data_in({ser_rkmsb,ser_rklsb,ser_r}),.data_out(even_data),
      .clock_present());
   */
   assign      even_data = {ser_rkmsb,ser_rklsb,ser_r};
   
   always @(posedge ser_rx_clk)
     if(rst_rxclk)
       holder <= 9'd0;
     else
       holder <= {even_data[17],even_data[15:8]};
   
   always @(posedge ser_rx_clk)
     if(rst_rxclk)
       odd_data <= 18'd0;
     else
       odd_data <= {even_data[16],holder[8],even_data[7:0],holder[7:0]};
   
   assign      chosen_data = odd ? odd_data : even_data;

   // Transfer xon and xoff info to the main system clock for flow control purposes
   reg 	       xon_rcvd_rxclk, xoff_rcvd_rxclk;
   always @(posedge ser_rx_clk)
     xon_rcvd_rxclk = ({1'b1,K_XON} == {ser_rkmsb,ser_r[15:8]}) | ({1'b1,K_XON} == {ser_rklsb,ser_r[7:0]} );
   always @(posedge ser_rx_clk)
     xoff_rcvd_rxclk = ({1'b1,K_XOFF} == {ser_rkmsb,ser_r[15:8]}) | ({1'b1,K_XOFF} == {ser_rklsb,ser_r[7:0]} );
   
   oneshot_2clk xon_1s(.clk_in(ser_rx_clk),.in(xon_rcvd_rxclk),.clk_out(clk),.out(xon_rcvd));
   oneshot_2clk xoff_1s(.clk_in(ser_rx_clk),.in(xoff_rcvd_rxclk),.clk_out(clk),.out(xoff_rcvd));

   // If the other side is sending xon or xoff, or is flow controlled (b/c we told them to be), don't fill the fifos
   wire        wait_here = ((chosen_data == {2'b10,K_COMMA,D_56})||
			    (chosen_data == {2'b11,K_XON,K_XON})||
			    (chosen_data == {2'b11,K_XOFF,K_XOFF}) );

   always @(posedge ser_rx_clk)
     if(rst_rxclk) sop_i <= 0;
     else if(state == FIRSTLINE1) sop_i <= 1;
     else if(write_d) sop_i <= 0;
   
   reg 	       write_pre;
   always @(posedge ser_rx_clk)
     if(rst_rxclk)
       begin
	  state <= IDLE;
	  odd <= 0;
	  halfline <= 0;
	  line_i <= 0;
	  eop_i <= 0;
	  error_i <= 0;
	  write_pre <= 0;
       end
     else
       case(state)
	 IDLE :
	   begin
	      error_i <= 0;
	      write_pre <= 0;
	      if(even_data == {2'b11,K_PKT_START,K_PKT_START})
		begin
		   state <= FIRSTLINE1;
		   odd <= 0;
		end
	      else if(odd_data == {2'b11,K_PKT_START,K_PKT_START})
		begin
		   state <= FIRSTLINE1;
		   odd <= 1;
		end
	   end

	 FIRSTLINE1 :
	   if(chosen_data[17:16] == 0)
	     begin
		halfline <= chosen_data[15:0];
		state <= FIRSTLINE2;
	     end
	   else if(wait_here)
	     ;  // Flow Controlled, so wait here and do nothing
	   else
	     state <= ERROR;

	 FIRSTLINE2 :
	   if(chosen_data[17:16] == 0)
	     begin
		line_i <= {chosen_data[15:0],halfline};
		if(full)  // No space to write to!  Should have been avoided by flow control
		  state <= ERROR;
		else
		  begin
		     state <= PKT1;
		     write_pre <= 1;
		  end
	     end // if (chosen_data[17:16] == 0)
	   else if(wait_here)
	     ;  // Flow Controlled, so wait here and do nothing
	   else
	     state <= ERROR;
	 
	 PKT1 :
	   begin
	      write_pre <= 0;
	      if(chosen_data[17:16] == 0)
		begin
		   halfline <= chosen_data[15:0];
		   state <= PKT2;
		end
	      else if(wait_here)
		;  // Flow Controlled
	      else if(chosen_data == {2'b11,K_PKT_END,K_PKT_END})
	  	state <= CRC_CHECK;
	      else
		state <= ERROR;
	   end // case: PKT1
	 
	 PKT2 :
	   if(chosen_data[17:16] == 0)
	     begin
		line_i <= {1'b0,1'b0,1'b0,chosen_data[15:0],halfline};
		if(full)  // No space to write to!
		  state <= ERROR;
		else
		  begin
		     state <= PKT1;
		     write_pre <= 1;
		  end
	     end // if (chosen_data[17:16] == 0)
	   else if(wait_here)
	     ;  // Flow Controlled
	   else
	     state <= ERROR;
	   
	 CRC_CHECK :
	   if(chosen_data[17:0] == {2'b00,CRC})
	     begin
		if(full)
		  state <= ERROR;
		else
		  begin
		     eop_i <= 1;
		     state <= DONE;
		  end
	     end
	   else if(wait_here)
	     ;
	   else
	     state <= ERROR;
	 
	 ERROR :
	   begin
	      error_i <= 1;
	      if(~full)
		state <= IDLE;
	   end
	 DONE :
	   begin
	      state <= IDLE;
	      eop_i <= 0;
	   end
	      
       endcase // case(state)
   
   
   always @(posedge ser_rx_clk)
     if(rst_rxclk)
       CRC <= 16'hFFFF;
     else if(state == IDLE)
       CRC <= 16'hFFFF;
     else if(chosen_data[17:16] == 2'b00)
       CRC <= nextCRC;

   CRC16_D16 crc_blk(chosen_data[15:0],CRC,nextCRC);

   always @(posedge ser_rx_clk)
     if(rst_rxclk) write_d <= 0;
     else write_d <= write_pre;

   // Internal FIFO, size 9 is 2K, size 10 is 4K Bytes
   assign write = eop_i | (error_i & ~full) | (write_d & (state != CRC_CHECK));


//`define CASC 1
`define MYFIFO 1   
//`define XILFIFO 1

`ifdef CASC   
   cascadefifo2 #(.WIDTH(35),.SIZE(FIFOSIZE)) serdes_rx_fifo
     (.clk(clk),.rst(rst),.clear(0),
      .datain({error_i,sop_i,eop_i,line_i}), .write(write), .full(full),
      .dataout({error_o,sop_o,eop_o,line_o}), .read(read), .empty(empty),
      .space(fifo_space),.occupied(fifo_occupied) );
   assign fifo_full = full;
   assign fifo_empty = empty;
`endif

`ifdef MYFIFO
   wire [FIFOSIZE-1:0] level;
    fifo_2clock_casc #(.DWIDTH(35),.AWIDTH(FIFOSIZE)) serdes_rx_fifo
     (.arst(rst),
      .wclk(ser_rx_clk),.datain({error_i,sop_i,eop_i,line_i}), .write(write), .full(full),
      .rclk(clk),.dataout({error_o,sop_o,eop_o,line_o}), .read(read), .empty(empty),
      .level_rclk(level) );
   assign 	       fifo_space = {{(16-FIFOSIZE){1'b0}},{FIFOSIZE{1'b1}}} - 
		       {{(16-FIFOSIZE){1'b0}},level};
   assign 	       fifo_occupied = { {(16-FIFOSIZE){1'b0}} ,level};
   assign 	       fifo_full = full;   // Note -- fifo_full is in the wrong clock domain
   assign 	       fifo_empty = empty;
`endif

`ifdef XILFIFO
   wire [FIFOSIZE-1:0] level;
   fifo_generator_v4_1 ser_rx_fifo
     (.din({error_i,sop_i,eop_i,line_i}),
      .rd_clk(clk),
      .rd_en(read),
      .rst(rst),
      .wr_clk(ser_rx_clk),
      .wr_en(write),
      .dout({error_o,sop_o,eop_o,line_o}),
      .empty(empty),
      .full(full),
      .rd_data_count(level),
      .wr_data_count() );
   assign 	       fifo_space = {{(16-FIFOSIZE){1'b0}},{FIFOSIZE{1'b1}}} - 
		       {{(16-FIFOSIZE){1'b0}},level};
   assign 	       fifo_occupied = { {(16-FIFOSIZE){1'b0}}, level };
   assign 	       fifo_full = full;   // Note -- fifo_full is in the wrong clock domain
   assign 	       fifo_empty = empty;
`endif //  `ifdef XILFIFO
   
   
   // Internal FIFO to Buffer interface
   reg 	       xfer_active;

   always @(posedge clk)
     if(rst)
       xfer_active <= 0;
     else if(xfer_active & ~empty & (eop_o | wr_full_i | error_o))
       xfer_active <= 0;
     else if(wr_ready_i & sop_o)
       xfer_active <= 1;

   assign      read = (xfer_active | ~sop_o) & ~empty;

   assign      wr_write_o = xfer_active & ~empty;
   assign      wr_done_o = eop_o & ~empty & xfer_active;
   //assign      wr_error_o = xfer_active & ((wr_full_i & ~eop_o & ~empty)|error_o);
   assign      wr_error_o = xfer_active & ~empty & error_o;

   assign      wr_dat_o = line_o;

   wire        slu = ~({2'b11,K_ERROR}=={ser_rkmsb,ser_rklsb,ser_r});
   reg [3:0]   slu_reg;
   
   always @(posedge clk)
     if(rst) slu_reg <= 0;
     else slu_reg <= {slu_reg[2:0],slu};

   always @(posedge clk)
     serdes_link_up <= &slu_reg[3:1];
   
   assign      debug = { full, empty, odd, xfer_active, sop_i, eop_i, error_i, state[2:0] };
   
endmodule // serdes_rx