1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
module Reg_int (
// Wishbone compliant core host interface
input CLK_I, // Wishbone interface clock (nominally 50 MHz)
input RST_I, // Active high (async) reset of the Wishbone interface
input STB_I, // Active high module-select
input CYC_I, // Active high cycle-enable
input [6:0] ADR_I, // Module register address
input WE_I, // Active high for writes, low for reads
input [31:0] DAT_I, // Write data
output reg [31:0] DAT_O, // Read data
output reg ACK_O, // Acknowledge output – single high pulse
// Tx host interface
output [4:0] Tx_Hwmark,
output [4:0] Tx_Lwmark,
output MAC_tx_add_en,
output FullDuplex,
output [3:0] MaxRetry,
output [5:0] IFGset,
output [7:0] MAC_tx_add_prom_data,
output [2:0] MAC_tx_add_prom_add,
output MAC_tx_add_prom_wr,
// Rx host interface
output MAC_rx_add_chk_en,
output [7:0] MAC_rx_add_prom_data,
output [2:0] MAC_rx_add_prom_add,
output MAC_rx_add_prom_wr,
output broadcast_filter_en,
output [15:0] broadcast_bucket_depth,
output [15:0] broadcast_bucket_interval,
output RX_APPEND_CRC,
output [4:0] Rx_Hwmark,
output [4:0] Rx_Lwmark,
output CRC_chk_en,
output [5:0] RX_IFG_SET,
output [15:0] RX_MAX_LENGTH, // Default 1518
output [6:0] RX_MIN_LENGTH, // Default 64
// Flow control settings
output pause_frame_send_en,
output [15:0] pause_quanta_set,
output tx_pause_en,
output [15:0] fc_hwmark,
output [15:0] fc_lwmark,
// RMON host interface
output [5:0] CPU_rd_addr,
output CPU_rd_apply,
input CPU_rd_grant,
input [31:0] CPU_rd_dout,
//Phy int host interface
output Line_loop_en,
output [2:0] Speed,
//MII to CPU
output [7:0] Divider, // Divider for the host clock
output [15:0] CtrlData, // Control Data (to be written to the PHY reg.)
output [4:0] Rgad, // Register Address (within the PHY)
output [4:0] Fiad, // PHY Address
output NoPre, // No Preamble (no 32-bit preamble)
output WCtrlData, // Write Control Data operation
output RStat, // Read Status operation
output ScanStat, // Scan Status operation
input Busy, // Busy Signal
input LinkFail, // Link Integrity Signal
input Nvalid, // Invalid Status (qualifier for the valid scan result)
input [15:0] Prsd, // Read Status Data (data read from the PHY)
input WCtrlDataStart, // This signals resets the WCTRLDATA bit in the MIIM Command register
input RStatStart, // This signal resets the RSTAT BIT in the MIIM Command register
input UpdateMIIRX_DATAReg // Updates MII RX_DATA register with read data
);
// New registers for controlling the MII interface
wire [8:0] MIIMODER;
reg [2:0] MIICOMMAND;
wire [12:0] MIIADDRESS;
wire [15:0] MIITX_DATA;
reg [15:0] MIIRX_DATA;
wire [2:0] MIISTATUS;
// New registers for controlling the MII interface
// MIIMODER
assign NoPre = MIIMODER[8];
assign Divider = MIIMODER[7:0];
// MIICOMMAND
assign WCtrlData = MIICOMMAND[2];
assign RStat = MIICOMMAND[1];
assign ScanStat = MIICOMMAND[0];
// MIIADDRESS
assign Rgad = MIIADDRESS[12:8];
assign Fiad = MIIADDRESS[4:0];
// MIITX_DATA
assign CtrlData = MIITX_DATA[15:0];
// MIISTATUS
assign MIISTATUS[2:0] = { 13'b0, Nvalid, Busy, LinkFail };
wire Wr;
RegCPUData #( 5 ) U_0_000( Tx_Hwmark , 7'd000, 5'h09, RST_I, CLK_I, Wr, ADR_I, DAT_I[4:0] );
RegCPUData #( 5 ) U_0_001( Tx_Lwmark , 7'd001, 5'h08, RST_I, CLK_I, Wr, ADR_I, DAT_I[4:0] );
RegCPUData #( 1 ) U_0_002( pause_frame_send_en , 7'd002, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 16 ) U_0_003( pause_quanta_set , 7'd003, 16'h01af, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 6 ) U_0_004( IFGset , 7'd004, 6'h0c, RST_I, CLK_I, Wr, ADR_I, DAT_I[5:0] );
RegCPUData #( 1 ) U_0_005( FullDuplex , 7'd005, 1'h1, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 4 ) U_0_006( MaxRetry , 7'd006, 4'h2, RST_I, CLK_I, Wr, ADR_I, DAT_I[3:0] );
RegCPUData #( 1 ) U_0_007( MAC_tx_add_en , 7'd007, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 8 ) U_0_008( MAC_tx_add_prom_data , 7'd008, 8'h00, RST_I, CLK_I, Wr, ADR_I, DAT_I[7:0] );
RegCPUData #( 3 ) U_0_009( MAC_tx_add_prom_add , 7'd009, 3'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[2:0] );
RegCPUData #( 1 ) U_0_010( MAC_tx_add_prom_wr , 7'd010, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 1 ) U_0_011( tx_pause_en , 7'd011, 1'h1, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 16 ) U_0_012( fc_hwmark , 7'd012, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 16 ) U_0_013( fc_lwmark , 7'd013, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 1 ) U_0_014( MAC_rx_add_chk_en , 7'd014, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 8 ) U_0_015( MAC_rx_add_prom_data , 7'd015, 8'h00, RST_I, CLK_I, Wr, ADR_I, DAT_I[7:0] );
RegCPUData #( 3 ) U_0_016( MAC_rx_add_prom_add , 7'd016, 3'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[2:0] );
RegCPUData #( 1 ) U_0_017( MAC_rx_add_prom_wr , 7'd017, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 1 ) U_0_018( broadcast_filter_en , 7'd018, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 16 ) U_0_019( broadcast_bucket_depth , 7'd019, 16'h0000, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 16 ) U_0_020( broadcast_bucket_interval , 7'd020, 16'h0000, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 1 ) U_0_021( RX_APPEND_CRC , 7'd021, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 5 ) U_0_022( Rx_Hwmark , 7'd022, 5'h1a, RST_I, CLK_I, Wr, ADR_I, DAT_I[4:0] );
RegCPUData #( 5 ) U_0_023( Rx_Lwmark , 7'd023, 5'h10, RST_I, CLK_I, Wr, ADR_I, DAT_I[4:0] );
RegCPUData #( 1 ) U_0_024( CRC_chk_en , 7'd024, 1'h1, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 6 ) U_0_025( RX_IFG_SET , 7'd025, 6'h0c, RST_I, CLK_I, Wr, ADR_I, DAT_I[5:0] );
RegCPUData #( 16 ) U_0_026( RX_MAX_LENGTH , 7'd026, 16'h2710, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 7 ) U_0_027( RX_MIN_LENGTH , 7'd027, 7'h40, RST_I, CLK_I, Wr, ADR_I, DAT_I[6:0] );
RegCPUData #( 6 ) U_0_028( CPU_rd_addr , 7'd028, 6'h00, RST_I, CLK_I, Wr, ADR_I, DAT_I[5:0] );
RegCPUData #( 1 ) U_0_029( CPU_rd_apply , 7'd029, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
//RegCPUData #( 1 ) U_0_030( CPU_rd_grant , 7'd030, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
//RegCPUData #( 16 ) U_0_031( CPU_rd_dout_l , 7'd031, 16'h0000, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
//RegCPUData #( 16 ) U_0_032( CPU_rd_dout_h , 7'd032, 16'h0000, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
RegCPUData #( 1 ) U_0_033( Line_loop_en , 7'd033, 1'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[0:0] );
RegCPUData #( 3 ) U_0_034( Speed , 7'd034, 3'h0, RST_I, CLK_I, Wr, ADR_I, DAT_I[2:0] );
// New registers for controlling the MDIO interface
RegCPUData #( 9 ) U_0_035( MIIMODER , 7'd035, 9'h064, RST_I, CLK_I, Wr, ADR_I, DAT_I[8:0] );
// Reg #36 is MIICOMMAND - implemented separately below
RegCPUData #( 13 ) U_0_037( MIIADDRESS , 7'd037, 13'h0000, RST_I, CLK_I, Wr, ADR_I, DAT_I[12:0] );
RegCPUData #( 16 ) U_0_038( MIITX_DATA , 7'd038, 16'h0000, RST_I, CLK_I, Wr, ADR_I, DAT_I[15:0] );
// Asserted in first clock of 2-cycle access, negated otherwise
wire Access = ~ACK_O & STB_I & CYC_I;
// Asserted in first clock of 2-cycle write access, negated otherwise
assign Wr = Access & WE_I;
// MIICOMMAND register - needs special treatment because of auto-resetting bits
always @ ( posedge RST_I or posedge CLK_I )
if ( RST_I )
MIICOMMAND <= 0;
else
begin
if ( Wr & ( ADR_I == 7'd036 ) )
// Write access
MIICOMMAND <= DAT_I;
else
begin
if ( WCtrlDataStart )
MIICOMMAND[2] <= 0;
if ( RStatStart )
MIICOMMAND[1] <= 0;
end
end
// MIIRX_DATA register
always @ ( posedge RST_I or posedge CLK_I )
if ( RST_I )
MIIRX_DATA <= 0;
else
if ( UpdateMIIRX_DATAReg )
MIIRX_DATA <= Prsd;
// ACK_O is asserted in second clock of 2-cycle access, negated otherwise
always @ ( posedge RST_I or posedge CLK_I )
if ( RST_I )
ACK_O <= 0;
else
ACK_O <= Access;
always @ ( posedge RST_I or posedge CLK_I )
if(RST_I)
DAT_O <= 0;
else
begin
DAT_O <=0;
if ( Access & ~WE_I )
casez ( ADR_I )
7'd00: DAT_O <= Tx_Hwmark;
7'd01: DAT_O <= Tx_Lwmark;
7'd02: DAT_O <= pause_frame_send_en;
7'd03: DAT_O <= pause_quanta_set;
7'd04: DAT_O <= IFGset;
7'd05: DAT_O <= FullDuplex;
7'd06: DAT_O <= MaxRetry;
7'd07: DAT_O <= MAC_tx_add_en;
7'd08: DAT_O <= MAC_tx_add_prom_data;
7'd09: DAT_O <= MAC_tx_add_prom_add;
7'd10: DAT_O <= MAC_tx_add_prom_wr;
7'd11: DAT_O <= tx_pause_en;
7'd12: DAT_O <= fc_hwmark;
7'd13: DAT_O <= fc_lwmark;
7'd14: DAT_O <= MAC_rx_add_chk_en;
7'd15: DAT_O <= MAC_rx_add_prom_data;
7'd16: DAT_O <= MAC_rx_add_prom_add;
7'd17: DAT_O <= MAC_rx_add_prom_wr;
7'd18: DAT_O <= broadcast_filter_en;
7'd19: DAT_O <= broadcast_bucket_depth;
7'd20: DAT_O <= broadcast_bucket_interval;
7'd21: DAT_O <= RX_APPEND_CRC;
7'd22: DAT_O <= Rx_Hwmark;
7'd23: DAT_O <= Rx_Lwmark;
7'd24: DAT_O <= CRC_chk_en;
7'd25: DAT_O <= RX_IFG_SET;
7'd26: DAT_O <= RX_MAX_LENGTH;
7'd27: DAT_O <= RX_MIN_LENGTH;
7'd28: DAT_O <= CPU_rd_addr;
7'd29: DAT_O <= CPU_rd_apply;
7'd30: DAT_O <= CPU_rd_grant;
7'd31: DAT_O <= CPU_rd_dout;
//7'd32: DAT_O <= CPU_rd_dout[31:16];
7'd33: DAT_O <= Line_loop_en;
7'd34: DAT_O <= Speed;
// New registers for controlling MII interface
7'd35: DAT_O <= MIIMODER;
7'd36: DAT_O <= MIICOMMAND;
7'd37: DAT_O <= MIIADDRESS;
7'd38: DAT_O <= MIITX_DATA;
7'd39: DAT_O <= MIIRX_DATA;
7'd40: DAT_O <= MIISTATUS;
endcase
end
endmodule
module RegCPUData(
RegOut,
RegAddr,
RegInit,
Reset,
Clk,
Wr,
Addr,
WrData
);
parameter WIDTH = 16;
output reg [WIDTH-1:0] RegOut;
input [6:0] RegAddr;
input [WIDTH-1:0] RegInit;
input Reset;
input Clk;
input Wr;
input [6:0] Addr;
input [WIDTH-1:0] WrData;
always @( posedge Reset or posedge Clk )
if ( Reset )
RegOut <= RegInit;
else
if ( Wr && ( Addr == RegAddr ) )
RegOut <= WrData;
endmodule
|