summaryrefslogtreecommitdiff
path: root/usrp2/fpga/control_lib/giantfifo.v
blob: dba330b8a289b96d86a98e5ec3d538caf7d73ec7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209



module giantfifo
  #(parameter WIDTH=36)
    (input clk, input rst,
     input [WIDTH-1:0] datain,
     output [WIDTH-1:0] dataout,
     input read,
     input write,
     input clear,
     output full,
     output empty,
     output [15:0] space,
     output [15:0] occupied,
     
     // External RAM
     inout [17:0] RAM_D,
     output reg [18:0] RAM_A,
     output RAM_CE1n,
     output RAM_CENn,
     output reg RAM_CLK,
     output reg RAM_WEn,
     output RAM_OEn,
     output RAM_LDn
     );

   wire [4:0] path1_occ, path2_space;
   wire [35:0] path1_dat, path2_dat;
   
   shortfifo #(.WIDTH(WIDTH)) sf1
     (.clk(clk),.rst(rst),.clear(clear),
      .datain(datain),.write(write),.full(full),
      .dataout(path1_dat),.read(path1_read),.empty(path1_empty),
      .space(),.occupied(path1_occ) );
   wire       path1_almost_empty = (path1_occ == 5'd1);
   
   shortfifo #(.WIDTH(WIDTH)) sf2
     (.clk(clk),.rst(rst),.clear(clear),
      .datain(path2_dat),.write(path2_write),.full(path2_full),
      .dataout(dataout),.read(read),.empty(empty),
      .space(path2_space),.occupied() );
   wire       path2_almost_full = (path2_space == 5'd1);
	
   assign     RAM_CE1n = 1'b0;
   assign     RAM_CENn = 1'b0;
   always @(clk)
     RAM_CLK <= #2 clk;
   assign     RAM_LDn = 1'b0;

   // State machine
   wire       write_now, read_now, idle, phase;
   reg 	      ram_full, ram_empty;
   
   reg [17:0] read_ptr, write_ptr;
   reg [2:0]  zbt_state;

   localparam ZBT_IDLE = 0;
   localparam ZBT_WRITE_UPPER = 2;
   localparam ZBT_WRITE_LOWER = 3;
   localparam ZBT_READ_UPPER = 4;
   localparam ZBT_READ_LOWER = 5;

   wire       can_write = ~ram_full & ~path1_empty;
   wire       can_write_chain = can_write & ~path1_almost_empty;

   wire       can_read = ~ram_empty & ~path2_full;
   wire       can_read_chain = can_read & ~path2_almost_full;
   
   assign     phase = zbt_state[0];

   reg [17:0] ram_occupied;
   wire       ram_almost_empty = (write_ptr == (read_ptr+1'b1));
   wire       ram_almost_full = ((write_ptr+1'b1) == read_ptr);

   always @(posedge clk)
     if(rst | clear)
       begin
	  zbt_state <= ZBT_IDLE;
	  write_ptr <= 0;
	  read_ptr <= 0;
	  ram_full <= 0;
	  ram_empty <= 1;
	  ram_occupied <= 0;
       end
     else
       case(zbt_state)
	 ZBT_IDLE : 
	   if(can_read) 
	     zbt_state <= ZBT_READ_UPPER;
	   else if(can_write)
	     zbt_state <= ZBT_WRITE_UPPER;
	 
	 ZBT_WRITE_UPPER : 
	   begin
	      zbt_state <= ZBT_WRITE_LOWER;
	      ram_occupied <= ram_occupied + 1;
	      ram_empty <= 0;
	      if(ram_occupied == 18'd10)
		ram_full <= 1;
	   end
	 ZBT_WRITE_LOWER : 
	   begin
	      write_ptr <= write_ptr + 1;
	      if(can_read_chain) 
		zbt_state <= ZBT_READ_UPPER;
	      else if(can_write_chain)
		zbt_state <= ZBT_WRITE_UPPER;
	      else
		zbt_state <= ZBT_IDLE;
	   end
	 ZBT_READ_UPPER : 
	   begin
	      zbt_state <= ZBT_READ_LOWER;
	      ram_occupied <= ram_occupied - 1;
	      ram_full <= 0;
	      if(ram_occupied == 18'd1)
		ram_empty <= 1;
	   end
	 ZBT_READ_LOWER :
	   begin
	      read_ptr <= read_ptr + 1;
	      if(can_read_chain) 
		zbt_state <= ZBT_READ_UPPER;
	      else if(can_write_chain)
		zbt_state <= ZBT_WRITE_UPPER;
	      else
		zbt_state <= ZBT_IDLE;
	   end
	 default :
	   zbt_state <= ZBT_IDLE;
       endcase // case(zbt_state)

   // Need to generate RAM_WEn, RAM_OEn, RAM_D, RAM_A;
   assign path1_read = (zbt_state == ZBT_WRITE_LOWER);
   reg 	  path2_write, delayed_read_upper, delayed_read_lower, delayed_write;

   always @(posedge clk)
     if(delayed_read_upper)
       path2_dat[35:18] <= RAM_D;
   always @(posedge clk)
     if(delayed_read_lower)
       path2_dat[17:0] <= RAM_D;

   always @(posedge clk)
     if(rst)
       begin
	  delayed_read_upper <= 0;
	  delayed_read_lower <= 0;
	  path2_write <= 0;
       end
     else 
       begin
	  delayed_read_upper <= (zbt_state == ZBT_READ_LOWER);
	  delayed_read_lower <= delayed_read_upper;
	  path2_write <= delayed_read_lower;
       end
   
   reg [17:0] RAM_D_pre2, RAM_D_pre1, RAM_D_out;
   
   always @(posedge clk)
     RAM_D_pre2 <= phase ? path1_dat[17:0] : path1_dat[35:18];

   always @(posedge clk)  RAM_D_pre1 <= RAM_D_pre2;
   always @(posedge clk)  RAM_D_out <= RAM_D_pre1;
   reg 	      wr_del_1, wr_del_2; 	      
   always @(posedge clk)
     if(rst)
       begin
	  wr_del_1 <= 0;	  
	  wr_del_2 <= 0;
	  delayed_write <= 0;
       end
     else
       begin
	  delayed_write <= wr_del_2;
	  wr_del_2 <= wr_del_1;
	  wr_del_1 <= write_now;
       end

   reg delayed_read, rd_del_1, rd_del_2;
   always @(posedge clk)
     if(rst)
       begin
	  rd_del_1 <= 0;	  
	  rd_del_2 <= 0;
	  delayed_read <= 0;
       end
     else
       begin
	  delayed_read <= rd_del_2;
	  rd_del_2 <= rd_del_1;
	  rd_del_1 <= read_now;
       end
	  
   assign     RAM_D = delayed_write ? RAM_D_out : 18'bzzzzzzzzzzzzzzzzzz;
   assign     write_now = (zbt_state == ZBT_WRITE_UPPER) || (zbt_state == ZBT_WRITE_LOWER);
   assign     read_now =  (zbt_state == ZBT_READ_UPPER) || (zbt_state == ZBT_READ_LOWER);
   
   always @(posedge clk)
     RAM_A <= write_now ? {write_ptr,phase} : {read_ptr,phase};

   always @(posedge clk)
     RAM_WEn <= ~write_now;

   assign     RAM_OEn = ~delayed_read;
   assign     RAM_OEn = 0;
   
endmodule // giantfifo