1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
/*
* Copyright 2009 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <memory_map.h>
#include <db_base.h>
#include <stdio.h>
#include <spi.h>
#include <hal_io.h>
// RX IO Pins
#define LOCKDET (1 << 15) // This is an INPUT!!!
#define EN (1 << 14)
#define RX_EN (1 << 13) // 1 = RX on, 0 = RX off
#define RX_HP (1 << 12)
#define B1 (1 << 11)
#define B2 (1 << 10)
#define B3 (1 << 9)
#define B4 (1 << 8)
#define B5 (1 << 7)
#define B6 (1 << 6)
#define B7 (1 << 5)
#define RX_OE_MASK EN|RX_EN|RX_HP|B1|B2|B3|B4|B5|B6|B7
#define RX_SAFE_IO EN
// TX IO Pins
#define HB_PA_OFF (1 << 15) // 5GHz PA, 1 = off, 0 = on
#define LB_PA_OFF (1 << 14) // 2.4GHz PA, 1 = off, 0 = on
#define ANTSEL_TX1_RX2 (1 << 13) // 1 = Ant 1 to TX, Ant 2 to RX
#define ANTSEL_TX2_RX1 (1 << 12) // 1 = Ant 2 to TX, Ant 1 to RX
#define TX_EN (1 << 11) // 1 = TX on, 0 = TX off
#define AD9515DIV (1 << 4) // 1 = Div by 3, 0 = Div by 2
#define TX_OE_MASK HB_PA_OFF|LB_PA_OFF|ANTSEL_TX1_RX2|ANTSEL_TX2_RX1|TX_EN|AD9515DIV
#define TX_SAFE_IO HB_PA_OFF|LB_PA_OFF|ANTSEL_TX1_RX2|AD9515DIV
#define TUN_FREQ_MIN U2_DOUBLE_TO_FXPT_FREQ(2.4e9)
#define TUN_FREQ_MAX U2_DOUBLE_TO_FXPT_FREQ(6.0e9)
bool xcvr2450_init(struct db_base *db);
bool xcvr2450_set_freq(struct db_base *db, u2_fxpt_freq_t freq, u2_fxpt_freq_t *dc);
bool xcvr2450_set_gain_rx(struct db_base *db, u2_fxpt_gain_t gain);
bool xcvr2450_set_gain_tx(struct db_base *db, u2_fxpt_gain_t gain);
bool xcvr2450_set_tx_enable(struct db_base *db, bool on);
struct db_xcvr2450_common {
int d_mimo, d_int_div, d_frac_div, d_highband, d_five_gig;
int d_cp_current, d_ref_div, d_rssi_hbw;
int d_txlpf_bw, d_rxlpf_bw, d_rxlpf_fine, d_rxvga_ser;
int d_rssi_range, d_rssi_mode, d_rssi_mux;
int d_rx_hp_pin, d_rx_hpf, d_rx_ant;
int d_tx_ant, d_txvga_ser, d_tx_driver_lin;
int d_tx_vga_lin, d_tx_upconv_lin, d_tx_bb_gain;
int d_pabias_delay, d_pabias;
int d_rx_rf_gain, d_rx_bb_gain, d_txgain;
int d_ad9515_div;
int spi_mask;
};
struct db_xcvr2450_dummy {
struct db_base base;
struct db_xcvr2450_common common;
};
struct db_xcvr2450_rx {
struct db_base base;
struct db_xcvr2450_common common;
};
struct db_xcvr2450_tx {
struct db_base base;
struct db_xcvr2450_common common;
};
/*
* The class instances
*/
struct db_xcvr2450_rx db_xcvr2450_rx = {
.base.dbid = 0x0061,
.base.is_tx = false,
.base.output_enables = RX_OE_MASK,
.base.used_pins = RX_SAFE_IO,
.base.freq_min = TUN_FREQ_MIN,
.base.freq_max = TUN_FREQ_MAX,
.base.gain_min = U2_DOUBLE_TO_FXPT_GAIN(0),
.base.gain_max = U2_DOUBLE_TO_FXPT_GAIN(92),
.base.gain_step_size = U2_DOUBLE_TO_FXPT_GAIN(1),
.base.is_quadrature = true,
.base.i_and_q_swapped = true,
.base.spectrum_inverted = false,
//.base.lo_offset = U2_DOUBLE_TO_FXPT_FREQ(4.25e6),
.base.init = xcvr2450_init,
.base.set_freq = xcvr2450_set_freq,
.base.set_gain = xcvr2450_set_gain_rx,
.base.set_tx_enable = 0,
.base.atr_mask = 0x00E0, //CHECK this
//.base.atr_txval = POWER_UP,
//.base.atr_rxval = POWER_UP|MIX_EN,
// .base.atr_tx_delay =
// .base.atr_rx_delay =
.common.spi_mask = SPI_SS_RX_DB,
};
struct db_xcvr2450_tx db_xcvr2450_tx = {
.base.dbid = 0x0060,
.base.is_tx = true,
.base.output_enables = TX_OE_MASK,
.base.used_pins = TX_SAFE_IO,
.base.freq_min = TUN_FREQ_MIN,
.base.freq_max = TUN_FREQ_MAX,
.base.gain_min = U2_DOUBLE_TO_FXPT_GAIN(0),
.base.gain_max = U2_DOUBLE_TO_FXPT_GAIN(30),
.base.gain_step_size = U2_DOUBLE_TO_FXPT_GAIN(30.0/63.0),
.base.is_quadrature = true,
.base.i_and_q_swapped = true,
.base.spectrum_inverted = false,
//.base.lo_offset = U2_DOUBLE_TO_FXPT_FREQ(4.25e6),
.base.init = xcvr2450_init,
.base.set_freq = xcvr2450_set_freq,
.base.set_gain = xcvr2450_set_gain_tx,
.base.set_tx_enable = xcvr2450_set_tx_enable,
.base.atr_mask = 0x00E0, //CHECK this
//.base.atr_txval = POWER_UP|MIX_EN,
//.base.atr_rxval = POWER_UP|ANT_SW,
// .base.atr_tx_delay =
// .base.atr_rx_delay =
.common.spi_mask = SPI_SS_TX_DB,
};
/**************************************************
* Set Registers
**************************************************/
void
send_reg(struct db_xcvr2450_dummy *db, int v){
// Send 24 bits, it keeps last 18 clocked in
spi_transact(SPI_TXONLY,db->common.spi_mask,v,24,SPIF_PUSH_FALL);
printf("xcvr2450: Setting reg %d to %06X\n", (v&15), v);
}
void
set_reg_standby(struct db_xcvr2450_dummy *db){
int reg_standby = (
(db->common.d_mimo<<17) |
(1<<16) |
(1<<6) |
(1<<5) |
(1<<4) | 2);
send_reg(db, reg_standby);
}
void
set_reg_int_divider(struct db_xcvr2450_dummy *db){
int reg_int_divider = (((db->common.d_frac_div & 0x03)<<16) |
(db->common.d_int_div<<4) | 3);
send_reg(db, reg_int_divider);
}
void
set_reg_frac_divider(struct db_xcvr2450_dummy *db){
int reg_frac_divider = ((db->common.d_frac_div & 0xfffc)<<2) | 4;
send_reg(db, reg_frac_divider);
}
void
set_reg_bandselpll(struct db_xcvr2450_dummy *db){
int reg_bandselpll = ((db->common.d_mimo<<17) |
(1<<16) |
(1<<15) |
(1<<11) |
(db->common.d_highband<<10) |
(db->common.d_cp_current<<9) |
(db->common.d_ref_div<<5) |
(db->common.d_five_gig<<4) | 5);
send_reg(db, reg_bandselpll);
}
void
set_reg_cal(struct db_xcvr2450_dummy *db){
// FIXME do calibration
int reg_cal = (
(1<<14) | 6);
send_reg(db, reg_cal);
}
void
set_reg_lpf(struct db_xcvr2450_dummy *db){
int reg_lpf = (
(db->common.d_rssi_hbw<<15) |
(db->common.d_txlpf_bw<<10) |
(db->common.d_rxlpf_bw<<9) |
(db->common.d_rxlpf_fine<<4) | 7);
send_reg(db, reg_lpf);
}
void
set_reg_rxrssi_ctrl(struct db_xcvr2450_dummy *db){
int reg_rxrssi_ctrl = (
(db->common.d_rxvga_ser<<16) |
(db->common.d_rssi_range<<15) |
(db->common.d_rssi_mode<<14) |
(db->common.d_rssi_mux<<12) |
(1<<9) |
(db->common.d_rx_hpf<<6) |
(1<<4) | 8);
send_reg(db, reg_rxrssi_ctrl);
}
void
set_reg_txlin_gain(struct db_xcvr2450_dummy *db){
int reg_txlin_gain = (
(db->common.d_txvga_ser<<14) |
(db->common.d_tx_driver_lin<<12) |
(db->common.d_tx_vga_lin<<10) |
(db->common.d_tx_upconv_lin<<6) |
(db->common.d_tx_bb_gain<<4) | 9);
send_reg(db, reg_txlin_gain);
}
void
set_reg_pabias(struct db_xcvr2450_dummy *db){
int reg_pabias = (
(db->common.d_pabias_delay<<10) |
(db->common.d_pabias<<4) | 10);
send_reg(db, reg_pabias);
}
void
set_reg_rxgain(struct db_xcvr2450_dummy *db){
int reg_rxgain = (
(db->common.d_rx_rf_gain<<9) |
(db->common.d_rx_bb_gain<<4) | 11);
send_reg(db, reg_rxgain);
}
void
set_reg_txgain(struct db_xcvr2450_dummy *db){
int reg_txgain = (
(db->common.d_txgain<<4) | 12);
send_reg(db, reg_txgain);
}
/**************************************************
* GPIO
**************************************************/
void
set_gpio(struct db_xcvr2450_dummy *db){
// We calculate four values:
//
// io_rx_while_rx: what to drive onto io_rx_* when receiving
// io_rx_while_tx: what to drive onto io_rx_* when transmitting
// io_tx_while_rx: what to drive onto io_tx_* when receiving
// io_tx_while_tx: what to drive onto io_tx_* when transmitting
//
// B1-B7 is ignored as gain is set serially for now.
int rx_hp, tx_antsel, rx_antsel, tx_pa_sel;
if(db->common.d_rx_hp_pin)
rx_hp = RX_HP;
else
rx_hp = 0;
if(db->common.d_tx_ant)
tx_antsel = ANTSEL_TX2_RX1;
else
tx_antsel = ANTSEL_TX1_RX2;
if(db->common.d_rx_ant)
rx_antsel = ANTSEL_TX2_RX1;
else
rx_antsel = ANTSEL_TX1_RX2;
if(db->common.d_five_gig)
tx_pa_sel = LB_PA_OFF;
else
tx_pa_sel = HB_PA_OFF;
int io_rx_while_rx = EN|rx_hp|RX_EN;
int io_rx_while_tx = EN|rx_hp;
int io_tx_while_rx = HB_PA_OFF|LB_PA_OFF|rx_antsel|AD9515DIV;
int io_tx_while_tx = tx_pa_sel|tx_antsel|TX_EN|AD9515DIV;
/*rx_set_atr_rxval(io_rx_while_rx);
rx_set_atr_txval(io_rx_while_tx);
tx_set_atr_rxval(io_tx_while_rx);
tx_set_atr_txval(io_tx_while_tx);*/
hal_gpio_write(GPIO_RX_BANK, io_rx_while_rx, 0xffff); //mask?
hal_gpio_write(GPIO_RX_BANK, io_rx_while_tx, 0xffff); //mask?
hal_gpio_write(GPIO_TX_BANK, io_tx_while_rx, 0xffff); //mask?
hal_gpio_write(GPIO_TX_BANK, io_tx_while_tx, 0xffff); //mask?
printf("GPIO: RXRX=%04X RXTX=%04X TXRX=%04X TXTX=%04X\n",
io_rx_while_rx, io_rx_while_tx, io_tx_while_rx, io_tx_while_tx);
}
/**************************************************
* Read register
**************************************************/
int
rx_read_io(){
//int val;
//if(d_which)
// val = FR_RB_IO_RX_B_IO_TX_B;
//else
// val = FR_RB_IO_RX_A_IO_TX_A;
int t = hal_gpio_read(GPIO_RX_BANK);//usrp()->_read_fpga_reg(val);
return (t >> 16) & 0xffff;
}
/**************************************************
* Init for TX and RX
**************************************************/
bool
xcvr2450_init(struct db_base *dbb){
struct db_xcvr2450_dummy *db = (struct db_xcvr2450_dummy *) dbb;
// Sane defaults
db->common.d_mimo = 1; // 0 = OFF, 1 = ON
db->common.d_int_div = 192; // 128 = min, 255 = max
db->common.d_frac_div = 0; // 0 = min, 65535 = max
db->common.d_highband = 0; // 0 = freq <= 5.4e9, 1 = freq > 5.4e9
db->common.d_five_gig = 0; // 0 = freq <= 3.e9, 1 = freq > 3e9
db->common.d_cp_current = 0; // 0 = 2mA, 1 = 4mA
db->common.d_ref_div = 4; // 1 to 7
db->common.d_rssi_hbw = 0; // 0 = 2 MHz, 1 = 6 MHz
db->common.d_txlpf_bw = 1; // 1 = 12 MHz, 2 = 18 MHz, 3 = 24 MHz
db->common.d_rxlpf_bw = 1; // 0 = 7.5 MHz, 1 = 9.5 MHz, 2 = 14 MHz, 3 = 18 MHz
db->common.d_rxlpf_fine = 2; // 0 = 90%, 1 = 95%, 2 = 100%, 3 = 105%, 4 = 110%
db->common.d_rxvga_ser = 1; // 0 = RXVGA controlled by B7:1, 1=controlled serially
db->common.d_rssi_range = 1; // 0 = low range (datasheet typo), 1=high range (0.5V - 2.0V)
db->common.d_rssi_mode = 1; // 0 = enable follows RXHP, 1 = enabled
db->common.d_rssi_mux = 0; // 0 = RSSI, 1 = TEMP
db->common.d_rx_hp_pin = 0; // 0 = Fc set by rx_hpf, 1 = 600 KHz
db->common.d_rx_hpf = 0; // 0 = 100Hz, 1 = 30KHz
db->common.d_rx_ant = 0; // 0 = Ant. #1, 1 = Ant. #2
db->common.d_tx_ant = 0; // 0 = Ant. #1, 1 = Ant. #2
db->common.d_txvga_ser = 1; // 0 = TXVGA controlled by B6:1, 1=controlled serially
db->common.d_tx_driver_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin)
db->common.d_tx_vga_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin)
db->common.d_tx_upconv_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin)
db->common.d_tx_bb_gain = 3; // 0=maxgain-5dB, 1=max-3dB, 2=max-1.5dB, 3=max
db->common.d_pabias_delay = 15; // 0 = 0, 15 = 7uS
db->common.d_pabias = 0; // 0 = 0 uA, 63 = 315uA
db->common.d_rx_rf_gain = 0; // 0 = 0dB, 1 = 0dB, 2 = 15dB, 3 = 30dB
db->common.d_rx_bb_gain = 16; // 0 = min, 31 = max (0 - 62 dB)
db->common.d_txgain = 63; // 0 = min, 63 = max
/*--------------------------------> !!! taken care of by db base operations
// Initialize GPIO and ATR
tx_write_io(TX_SAFE_IO, TX_OE_MASK);
tx_write_oe(TX_OE_MASK, ~0);
tx_set_atr_txval(TX_SAFE_IO);
tx_set_atr_rxval(TX_SAFE_IO);
tx_set_atr_mask(TX_OE_MASK);
rx_write_io(RX_SAFE_IO, RX_OE_MASK);
rx_write_oe(RX_OE_MASK, ~0);
rx_set_atr_rxval(RX_SAFE_IO);
rx_set_atr_txval(RX_SAFE_IO);
rx_set_atr_mask(RX_OE_MASK);
---------------------------------------> replaced with set_gpio
* */
set_gpio(db);
// Initialize chipset
// TODO: perform reset sequence to ensure power up defaults
set_reg_standby(db);
set_reg_bandselpll(db);
set_reg_cal(db);
set_reg_lpf(db);
set_reg_rxrssi_ctrl(db);
set_reg_txlin_gain(db);
set_reg_pabias(db);
set_reg_rxgain(db);
set_reg_txgain(db);
//FIXME: set_freq(2.45e9);
db->base.set_gain(dbb, (db->base.gain_max - db->base.gain_min)/2); //set mid-range gain
return true;
}
/**************************************************
* Lock detect
**************************************************/
bool
lock_detect(){
/*
@returns: the value of the VCO/PLL lock detect bit.
@rtype: 0 or 1
*/
if(rx_read_io() & LOCKDET) {
return true;
}
else { // Give it a second chance
if(rx_read_io() & LOCKDET)
return true;
else
return false;
}
}
/**************************************************
* Set the freq
**************************************************/
bool
xcvr2450_set_freq(struct db_base *dbb, u2_fxpt_freq_t freq, u2_fxpt_freq_t *dc){
struct db_xcvr2450_dummy *db = (struct db_xcvr2450_dummy *) dbb;
//ensure gain in within range
if(!(freq >= db->base.freq_min && freq <= db->base.freq_max)) {
return false;
}
u2_fxpt_freq_t vco_freq;
if(freq > U2_DOUBLE_TO_FXPT_FREQ(3e9)) {
db->common.d_five_gig = 1;
db->common.d_ref_div = 1;
db->common.d_ad9515_div = 3;
//scaler = U2_DOUBLE_TO_FXPT_FREQ(4.0/5.0);
vco_freq = (4*freq)/5;
}
else {
db->common.d_five_gig = 0;
db->common.d_ref_div = 1;
db->common.d_ad9515_div = 3;
//scaler = U2_DOUBLE_TO_FXPT_FREQ(4.0/3.0);
vco_freq = (4*freq)/3;
}
if(freq > U2_DOUBLE_TO_FXPT_FREQ(5.27e9)) {
db->common.d_highband = 1;
}
else {
db->common.d_highband = 0;
}
//double vco_freq = target_freq*scaler;
//double sys_clk = usrp()->fpga_master_clock_freq(); // Usually 64e6
u2_fxpt_freq_t ref_clk = U2_DOUBLE_TO_FXPT_FREQ(MASTER_CLK_RATE)/db->common.d_ad9515_div;
u2_fxpt_freq_t phdet_freq = ref_clk/db->common.d_ref_div;
//double div = vco_freq/phdet_freq;
// d_int_div = int(floor(div));
// d_frac_div = int((div-d_int_div)*65536.0);
// double actual_freq = phdet_freq*(d_int_div+(d_frac_div/65536.0))/scaler;
u2_fxpt_freq_t desired_n = U2_DOUBLE_TO_FXPT_FREQ(1.0)*vco_freq/phdet_freq;
db->common.d_int_div = u2_fxpt_freq_round_to_int(desired_n);
*dc = db->common.d_int_div*phdet_freq*freq/vco_freq;
printf("RF=%d VCO=%d RefDiv=%d Phdet=%d Div=%d ActualRF=%d\n",
u2_fxpt_freq_round_to_int(freq), u2_fxpt_freq_round_to_int(vco_freq),
db->common.d_ref_div, u2_fxpt_freq_round_to_int(phdet_freq),
db->common.d_int_div, u2_fxpt_freq_round_to_int(*dc));
set_gpio(db);
set_reg_int_divider(db);
set_reg_frac_divider(db);
set_reg_bandselpll(db);
bool ok = lock_detect();
if(ok) {
if((freq > U2_DOUBLE_TO_FXPT_FREQ(5.275e9)) && (freq <= U2_DOUBLE_TO_FXPT_FREQ(5.35e9))) {
db->common.d_highband = 0;
set_reg_bandselpll(db);
ok = lock_detect();
printf("swap to 0 at %d, ok %d\n", u2_fxpt_freq_round_to_int(freq), ok);
}
if((freq >= U2_DOUBLE_TO_FXPT_FREQ(5.25e9)) && (freq <= U2_DOUBLE_TO_FXPT_FREQ(5.275e9))) {
db->common.d_highband = 1;
set_reg_bandselpll(db);
ok = lock_detect();
printf("swap to 1 at %d, ok %d\n", u2_fxpt_freq_round_to_int(freq), ok);
}
if(!ok){
printf("Fail %d\n", u2_fxpt_freq_round_to_int(freq));
}
}
return ok;
}
/**************************************************
* Set RX Gain
**************************************************/
bool
xcvr2450_set_gain_rx(struct db_base *dbb, u2_fxpt_gain_t gain){
struct db_xcvr2450_dummy *db = (struct db_xcvr2450_dummy *) dbb;
//ensure gain in within range
if(!(gain >= db->base.gain_min && gain <= db->base.gain_max)) {
return false;
}
// Split the gain between RF and baseband
// This is experimental, not prescribed
if(gain < U2_DOUBLE_TO_FXPT_GAIN(30.0)) {
db->common.d_rx_rf_gain = 0; // 0 dB RF gain
db->common.d_rx_bb_gain = gain/U2_DOUBLE_TO_FXPT_GAIN(2.0);
}
else if(gain >= U2_DOUBLE_TO_FXPT_GAIN(30.0) && gain < U2_DOUBLE_TO_FXPT_GAIN(61.0)) {
db->common.d_rx_rf_gain = 2; // 15 dB RF gain
db->common.d_rx_bb_gain = (gain-U2_DOUBLE_TO_FXPT_GAIN(15.0))/U2_DOUBLE_TO_FXPT_GAIN(2.0);
}
else if(gain >= U2_DOUBLE_TO_FXPT_GAIN(61.0)) {
db->common.d_rx_rf_gain = 3; // 30.5 dB RF gain
db->common.d_rx_bb_gain = (gain-U2_DOUBLE_TO_FXPT_GAIN(30.5))/U2_DOUBLE_TO_FXPT_GAIN(2.0);
}
set_reg_rxgain(db);
return true;
}
/**************************************************
* Set TX Gain
**************************************************/
bool
xcvr2450_set_gain_tx(struct db_base *dbb, u2_fxpt_gain_t gain){
struct db_xcvr2450_dummy *db = (struct db_xcvr2450_dummy *) dbb;
//ensure gain in within range
if(!(gain >= db->base.gain_min && gain <= db->base.gain_max)) {
return false;
}
//scale for register and set
db->common.d_txgain = gain/db->base.gain_step_size;
set_reg_txgain(db);
return true;
}
bool
xcvr2450_set_tx_enable(struct db_base *db, bool on){
return true;
}
|