1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
/* -*- c++ -*- */
/*
* Copyright 2008,2009 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <memory_map.h>
#include <i2c.h>
#include <usrp2_i2c_addr.h>
#include <string.h>
#include <stdio.h>
#include <db.h>
#include <db_base.h>
#include <hal_io.h>
#include <nonstdio.h>
struct db_base *tx_dboard; // the tx daughterboard that's installed
struct db_base *rx_dboard; // the rx daughterboard that's installed
extern struct db_base db_basic_tx;
extern struct db_base db_basic_rx;
extern struct db_base db_lf_tx;
extern struct db_base db_lf_rx;
extern struct db_base db_rfx_400_tx;
extern struct db_base db_rfx_400_rx;
extern struct db_base db_rfx_900_tx;
extern struct db_base db_rfx_900_rx;
extern struct db_base db_rfx_1200_tx;
extern struct db_base db_rfx_1200_rx;
extern struct db_base db_rfx_1800_tx;
extern struct db_base db_rfx_1800_rx;
extern struct db_base db_rfx_2400_tx;
extern struct db_base db_rfx_2400_rx;
extern struct db_base db_tvrx1;
extern struct db_base db_tvrx2;
extern struct db_base db_tvrx3;
extern struct db_base db_dbsrx;
extern struct db_base db_xcvr2450_tx;
extern struct db_base db_xcvr2450_rx;
struct db_base *all_dboards[] = {
&db_basic_tx,
&db_basic_rx,
&db_lf_tx,
&db_lf_rx,
&db_rfx_400_tx,
&db_rfx_400_rx,
&db_rfx_900_tx,
&db_rfx_900_rx,
&db_rfx_1200_tx,
&db_rfx_1200_rx,
&db_rfx_1800_tx,
&db_rfx_1800_rx,
&db_rfx_2400_tx,
&db_rfx_2400_rx,
&db_tvrx1,
&db_tvrx2,
&db_tvrx3,
&db_dbsrx,
&db_xcvr2450_tx,
&db_xcvr2450_rx,
0
};
typedef enum { UDBE_OK, UDBE_NO_EEPROM, UDBE_INVALID_EEPROM } usrp_dbeeprom_status_t;
static usrp_dbeeprom_status_t
read_raw_dboard_eeprom (unsigned char *buf, int i2c_addr)
{
if (!eeprom_read (i2c_addr, 0, buf, DB_EEPROM_CLEN))
return UDBE_NO_EEPROM;
if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE)
return UDBE_INVALID_EEPROM;
int sum = 0;
unsigned int i;
for (i = 0; i < DB_EEPROM_CLEN; i++)
sum += buf[i];
if ((sum & 0xff) != 0)
return UDBE_INVALID_EEPROM;
return UDBE_OK;
}
/*
* Return DBID, -1 <none> or -2 <invalid eeprom contents>
*/
int
read_dboard_eeprom(int i2c_addr)
{
unsigned char buf[DB_EEPROM_CLEN];
usrp_dbeeprom_status_t s = read_raw_dboard_eeprom (buf, i2c_addr);
//printf("\nread_raw_dboard_eeprom: %d\n", s);
switch (s){
case UDBE_OK:
return (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB];
case UDBE_NO_EEPROM:
default:
return -1;
case UDBE_INVALID_EEPROM:
return -2;
}
}
static struct db_base *
lookup_dbid(int dbid)
{
if (dbid < 0)
return 0;
int i;
for (i = 0; all_dboards[i]; i++)
if (all_dboards[i]->dbid == dbid)
return all_dboards[i];
return 0;
}
static struct db_base *
lookup_dboard(int i2c_addr, struct db_base *default_db, char *msg)
{
struct db_base *db;
int dbid = read_dboard_eeprom(i2c_addr);
// FIXME removing this printf has the system hang if there are two d'boards
// installed. (I think the problem is in i2c_read/write or the way
// I kludge the zero-byte write to set the read address in eeprom_read.)
printf("%s dbid: 0x%x\n", msg, dbid);
if (dbid < 0){ // there was some kind of problem. Treat as Basic Tx
return default_db;
}
else if ((db = lookup_dbid(dbid)) == 0){
printf("No daugherboard code for dbid = 0x%x\n", dbid);
return default_db;
}
return db;
}
void
set_atr_regs(int bank, struct db_base *db)
{
uint32_t val[4];
int shift;
int mask;
int i;
val[ATR_IDLE] = db->atr_rxval;
val[ATR_RX] = db->atr_rxval;
val[ATR_TX] = db->atr_txval;
val[ATR_FULL] = db->atr_txval;
if (bank == GPIO_TX_BANK){
mask = 0xffff0000;
shift = 16;
}
else {
mask = 0x0000ffff;
shift = 0;
}
for (i = 0; i < 4; i++){
int t = (atr_regs->v[i] & ~mask) | ((val[i] << shift) & mask);
//printf("atr_regs[%d] = 0x%x\n", i, t);
atr_regs->v[i] = t;
}
}
static void
set_gpio_mode(int bank, struct db_base *db)
{
int i;
hal_gpio_set_ddr(bank, db->output_enables, 0xffff);
set_atr_regs(bank, db);
for (i = 0; i < 16; i++){
if (db->used_pins & (1 << i)){
// set to either GPIO_SEL_SW or GPIO_SEL_ATR
hal_gpio_set_sel(bank, i, (db->atr_mask & (1 << i)) ? 'a' : 's');
}
}
}
static int __attribute__((unused))
determine_tx_mux_value(struct db_base *db)
{
if (db->i_and_q_swapped)
return 0x01;
else
return 0x10;
}
static int
determine_rx_mux_value(struct db_base *db)
{
#define ADC0 0x0
#define ADC1 0x1
#define ZERO 0x2
static int truth_table[8] = {
/* swap_iq, uses */
/* 0, 0x0 */ (ZERO << 2) | ZERO, // N/A
/* 0, 0x1 */ (ZERO << 2) | ADC0,
/* 0, 0x2 */ (ZERO << 2) | ADC1,
/* 0, 0x3 */ (ADC1 << 2) | ADC0,
/* 1, 0x0 */ (ZERO << 2) | ZERO, // N/A
/* 1, 0x1 */ (ZERO << 2) | ADC0,
/* 1, 0x2 */ (ZERO << 2) | ADC1,
/* 1, 0x3 */ (ADC0 << 2) | ADC1,
};
int subdev0_uses;
int subdev1_uses;
int uses;
if (db->is_quadrature)
subdev0_uses = 0x3; // uses A/D 0 and 1
else
subdev0_uses = 0x1; // uses A/D 0 only
// FIXME second subdev on Basic Rx, LF RX
// if subdev2 exists
// subdev1_uses = 0x2;
subdev1_uses = 0;
uses = subdev0_uses;
int swap_iq = db->i_and_q_swapped & 0x1;
int index = (swap_iq << 2) | uses;
return truth_table[index];
}
void
db_init(void)
{
int m;
tx_dboard = lookup_dboard(I2C_ADDR_TX_A, &db_basic_tx, "Tx");
//printf("db_init: tx dbid = 0x%x\n", tx_dboard->dbid);
set_gpio_mode(GPIO_TX_BANK, tx_dboard);
tx_dboard->init(tx_dboard);
//m = determine_tx_mux_value(tx_dboard);
//dsp_tx_regs->tx_mux = m;
//printf("tx_mux = 0x%x\n", m);
tx_dboard->current_lo_offset = tx_dboard->default_lo_offset;
rx_dboard = lookup_dboard(I2C_ADDR_RX_A, &db_basic_rx, "Rx");
//printf("db_init: rx dbid = 0x%x\n", rx_dboard->dbid);
set_gpio_mode(GPIO_RX_BANK, rx_dboard);
rx_dboard->init(rx_dboard);
m = determine_rx_mux_value(rx_dboard);
dsp_rx_regs->rx_mux = m;
//printf("rx_mux = 0x%x\n", m);
rx_dboard->current_lo_offset = rx_dboard->default_lo_offset;
}
/*!
* Calculate the frequency to use for setting the digital down converter.
*
* \param[in] target_freq desired RF frequency (Hz)
* \param[in] baseband_freq the RF frequency that corresponds to DC in the IF.
*
* \param[out] dxc_freq is the value for the ddc
* \param[out] inverted is true if we're operating in an inverted Nyquist zone.
*/
void
calc_dxc_freq(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t baseband_freq,
u2_fxpt_freq_t *dxc_freq, bool *inverted)
{
u2_fxpt_freq_t fs = U2_DOUBLE_TO_FXPT_FREQ(100e6); // converter sample rate
u2_fxpt_freq_t delta = target_freq - baseband_freq;
#if 0
printf("calc_dxc_freq\n");
printf(" fs = "); print_fxpt_freq(fs); newline();
printf(" target = "); print_fxpt_freq(target_freq); newline();
printf(" baseband = "); print_fxpt_freq(baseband_freq); newline();
printf(" delta = "); print_fxpt_freq(delta); newline();
#endif
if (delta >= 0){
while (delta > fs)
delta -= fs;
if (delta <= fs/2){ // non-inverted region
*dxc_freq = -delta;
*inverted = false;
}
else { // inverted region
*dxc_freq = delta - fs;
*inverted = true;
}
}
else {
while (delta < -fs)
delta += fs;
if (delta >= -fs/2){ // non-inverted region
*dxc_freq = -delta;
*inverted = false;
}
else { // inverted region
*dxc_freq = delta + fs;
*inverted = true;
}
}
}
bool
db_set_lo_offset(struct db_base *db, u2_fxpt_freq_t offset)
{
db->current_lo_offset = offset;
return true;
}
bool
db_tune(struct db_base *db, u2_fxpt_freq_t target_freq, struct tune_result *result)
{
memset(result, 0, sizeof(*result));
bool inverted = false;
u2_fxpt_freq_t dxc_freq;
u2_fxpt_freq_t actual_dxc_freq;
// Ask the d'board to tune as closely as it can to target_freq+lo_offset
bool ok = db->set_freq(db, target_freq+db->current_lo_offset, &result->baseband_freq);
// Calculate the DDC setting that will downconvert the baseband from the
// daughterboard to our target frequency.
calc_dxc_freq(target_freq, result->baseband_freq, &dxc_freq, &inverted);
// If the spectrum is inverted, and the daughterboard doesn't do
// quadrature downconversion, we can fix the inversion by flipping the
// sign of the dxc_freq... (This only happens using the basic_rx board)
if (db->spectrum_inverted)
inverted = !inverted;
if (inverted && !db->is_quadrature){
dxc_freq = -dxc_freq;
inverted = !inverted;
}
if (db->is_tx){
dxc_freq = -dxc_freq; // down conversion versus up conversion
ok &= db_set_duc_freq(dxc_freq, &actual_dxc_freq);
}
else {
ok &= db_set_ddc_freq(dxc_freq, &actual_dxc_freq);
}
result->dxc_freq = dxc_freq;
result->residual_freq = dxc_freq - actual_dxc_freq;
result->inverted = inverted;
return ok;
}
static int32_t
compute_freq_control_word(u2_fxpt_freq_t target_freq, u2_fxpt_freq_t *actual_freq)
{
// If we were using floating point, we'd calculate
// master = 100e6;
// v = (int) rint(target_freq / master_freq) * pow(2.0, 32.0);
//printf("compute_freq_control_word\n");
//printf(" target_freq = "); print_fxpt_freq(target_freq); newline();
int32_t master_freq = 100000000; // 100M
int32_t v = ((target_freq << 12)) / master_freq;
//printf(" fcw = %d\n", v);
*actual_freq = (v * (int64_t) master_freq) >> 12;
//printf(" actual = "); print_fxpt_freq(*actual_freq); newline();
return v;
}
bool
db_set_ddc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq)
{
int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq);
dsp_rx_regs->freq = v;
return true;
}
bool
db_set_duc_freq(u2_fxpt_freq_t dxc_freq, u2_fxpt_freq_t *actual_dxc_freq)
{
int32_t v = compute_freq_control_word(dxc_freq, actual_dxc_freq);
dsp_tx_regs->freq = v;
return true;
}
bool
db_set_gain(struct db_base *db, u2_fxpt_gain_t gain)
{
return db->set_gain(db, gain);
}
|