1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
/* -*- c++ -*- */
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <clocks.h>
#include "memory_map.h"
#include "ad9510.h"
#include "spi.h"
void
clocks_init(void)
{
// Set up basic clocking functions in AD9510
ad9510_write_reg(0x45, 0x00); // CLK2 drives distribution
ad9510_write_reg(0x3D, 0x00); // Turn on output 1 (FPGA CLK), normal levels
ad9510_write_reg(0x4B, 0x80); // Bypass divider 1
ad9510_write_reg(0x5A, 0x01); // Update Regs
spi_wait();
// Set up PLL for 10 MHz reference
// Reg 4, A counter, Don't Care
ad9510_write_reg(0x05, 0x00); // Reg 5, B counter MSBs, 0
ad9510_write_reg(0x06, 0x05); // Reg 6, B counter LSBs, 5
// Reg 7, Loss of reference detect, doesn't work yet, 0
ad9510_write_reg(0x5A, 0x01); // Update Regs
// FIXME, probably need interface to this...
timesync_regs->tick_control = 4;
// Primary clock configuration
clocks_mimo_config(MC_WE_DONT_LOCK);
// Set up other clocks
clocks_enable_test_clk(false);
clocks_enable_tx_dboard(false, 0);
clocks_enable_rx_dboard(false, 0);
// ETH phy clock
ad9510_write_reg(0x41, 0x01); // Turn off output 5 (phy_clk)
ad9510_write_reg(0x53, 0x80); // Bypass divider
ad9510_write_reg(0x5A, 0x01); // Update Regs
// Enable clock to ADCs and DACs
ad9510_write_reg(0x3F, 0x00); // Turn on output 3 (DAC CLK), normal levels
ad9510_write_reg(0x4F, 0x80); // Bypass Div #3
ad9510_write_reg(0x40, 0x02); // Turn on out 4 (ADC clk), LVDS
ad9510_write_reg(0x51, 0x80); // Bypass Div #4
ad9510_write_reg(0x5A, 0x01); // Update Regs
}
void
clocks_mimo_config(int flags)
{
if (flags & _MC_WE_LOCK){
// Reg 8, Charge pump on, dig lock det, positive PFD, 47
ad9510_write_reg(0x08, 0x47);
}
else {
// Reg 8, Charge pump off, dig lock det, positive PFD
ad9510_write_reg(0x08, 0x00);
}
// Reg 9, Charge pump current, 0x40=3mA, 0x00=650uA
ad9510_write_reg(0x09, 0x00);
// Reg A, Prescaler of 2, everything normal 04
ad9510_write_reg(0x0A, 0x04);
// Reg B, R Div MSBs, 0
ad9510_write_reg(0x0B, 0x00);
// Reg C, R Div LSBs, 1
ad9510_write_reg(0x0C, 0x01);
// Reg D, Antibacklash, Digital lock det, 0
ad9510_write_reg(0x5A, 0x01); // Update Regs
spi_wait();
// Allow for clock switchover
if (flags & _MC_WE_LOCK){ // WE LOCK
if (flags & _MC_MIMO_CLK_INPUT) {
// Turn on ref output and choose the MIMO connector
output_regs->clk_ctrl = 0x15;
}
else {
// turn on ref output and choose the SMA
output_regs->clk_ctrl = 0x1C;
}
}
else { // WE DONT LOCK
// Disable both ext clk inputs
output_regs->clk_ctrl = 0x10;
}
// Do we drive a clock onto the MIMO connector?
if (flags & MC_PROVIDE_CLK_TO_MIMO) {
ad9510_write_reg(0x3E, 0x00); // Turn on output 2 (clk_exp_out), normal levels
ad9510_write_reg(0x4D, 0x00); // Turn on Div2
ad9510_write_reg(0x4C, 0x44); // Set Div2 = 10, output a 10 MHz clock
}
else {
ad9510_write_reg(0x3E, 0x02); // Turn off output 2 (clk_exp_out)
ad9510_write_reg(0x4D, 0x80); // Bypass divider 2
}
ad9510_write_reg(0x5A, 0x01); // Update Regs
}
void
clocks_enable_test_clk(bool enable)
{
if (enable){
ad9510_write_reg(0x3C, 0x08); // Turn on output 0 -- Test output
ad9510_write_reg(0x49, 0x80); // Bypass divider 0
}
else {
ad9510_write_reg(0x3C, 0x02); // Turn off output 0
}
ad9510_write_reg(0x5A, 0x01); // Update Regs
}
void
clocks_enable_rx_dboard(bool enable, int divisor)
{
if (enable){
ad9510_write_reg(0x43, 0x08); // enable output 7 (db_rx_clk), CMOS
if (divisor == 0){
ad9510_write_reg(0x57, 0x80); // Bypass Div #7, 100 MHz clock
}
else {
// FIXME Matt, do something with divisor...
}
}
else {
ad9510_write_reg(0x43, 0x01); // Turn off output 7 (db_rx_clk)
}
ad9510_write_reg(0x5A, 0x01); // Update Regs
}
void
clocks_enable_tx_dboard(bool enable, int divisor)
{
if (enable){
ad9510_write_reg(0x42, 0x08); // enable output 6 (db_tx_clk), CMOS
if (divisor == 0) {
ad9510_write_reg(0x55, 0x80); // Bypass Div #6, 100 MHz clock
}
else {
// FIXME Matt, do something with divisor
}
}
else {
ad9510_write_reg(0x42, 0x01); // Turn off output 6 (db_tx_clk)
}
ad9510_write_reg(0x5A, 0x01); // Update Regs
}
|