1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
|
/* -*- c++ -*- */
/*
* Copyright 2007,2008 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <usrp_server.h>
#include <iostream>
#include <usrp_inband_usb_packet.h>
#include <mblock/class_registry.h>
#include <vector>
#include <usrp_usb_interface.h>
#include <string.h>
#include <fpga_regs_common.h>
#include <fpga_regs_standard.h>
#include <symbols_usrp_server_cs.h>
#include <symbols_usrp_channel.h>
#include <symbols_usrp_tx.h>
#include <symbols_usrp_rx.h>
#include <symbols_usrp_low_level_cs.h>
#include <symbols_usrp_interface_cs.h>
static pmt_t s_shutdown = pmt_intern("%shutdown");
typedef usrp_inband_usb_packet transport_pkt; // makes conversion to gigabit easy
const static bool verbose = false;
static std::string
str(long x)
{
std::ostringstream s;
s << x;
return s.str();
}
usrp_server::usrp_server(mb_runtime *rt, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(rt, instance_name, user_arg),
d_fpga_debug(false),
d_interp_tx(128), // these should match the lower level defaults (rx also)
d_decim_rx(128),
d_fake_rx(false)
{
if(verbose)
std::cout << "[USRP_SERVER] Initializing...\n";
// Dictionary for arguments to all of the components
d_usrp_dict = user_arg;
if (pmt_is_dict(d_usrp_dict)) {
if(pmt_t fpga_debug = pmt_dict_ref(d_usrp_dict,
pmt_intern("fpga-debug"),
PMT_NIL)) {
if(pmt_eqv(fpga_debug, PMT_T))
d_fpga_debug=true;
}
// Read the TX interpolations
if(pmt_t interp_tx = pmt_dict_ref(d_usrp_dict,
pmt_intern("interp-tx"),
PMT_NIL)) {
if(!pmt_eqv(interp_tx, PMT_NIL))
d_interp_tx = pmt_to_long(interp_tx);
}
// Read the RX decimation rate
if(pmt_t decim_rx = pmt_dict_ref(d_usrp_dict,
pmt_intern("decim-rx"),
PMT_NIL)) {
if(!pmt_eqv(decim_rx, PMT_NIL))
d_decim_rx = pmt_to_long(decim_rx);
}
}
// control & status port
d_cs = define_port("cs", "usrp-server-cs", true, mb_port::EXTERNAL);
d_cs_usrp = define_port("cs_usrp", "usrp-interface-cs", false, mb_port::INTERNAL);
// ports
//
// (if/when we do replicated ports, these will be replaced by a
// single replicated port)
for(int port=0; port < N_PORTS; port++) {
d_tx.push_back(define_port("tx"+str(port),
"usrp-tx",
true,
mb_port::EXTERNAL));
d_rx.push_back(define_port("rx"+str(port),
"usrp-rx",
true,
mb_port::EXTERNAL));
}
define_component("usrp", "usrp_usb_interface", d_usrp_dict);
connect("self", "cs_usrp", "usrp", "cs");
d_defer=false;
d_opened=false;
// FIXME: needs to be returned from open, if we want to use this
d_nrx_chan = 2;
d_ntx_chan = 2;
// Initialize capacity on each channel to 0 and to no owner
// Also initialize the USRP standard tx/rx pointers to NULL
for(int chan=0; chan < d_ntx_chan; chan++)
d_chaninfo_tx.push_back(channel_info());
for(int chan=0; chan < d_nrx_chan; chan++)
d_chaninfo_rx.push_back(channel_info());
d_rx_chan_mask = 0;
for(int i=0; i < D_MAX_RID; i++)
d_rids.push_back(rid_info());
//d_fake_rx=true;
}
/*!
* \brief resets the assigned capacity and owners of each RX and TX channel from
* allocations.
*/
void
usrp_server::reset_channels()
{
for(int chan=0; chan < d_ntx_chan; chan++) {
d_chaninfo_tx[chan].assigned_capacity = 0;
d_chaninfo_tx[chan].owner = PMT_NIL;
}
for(int chan=0; chan < d_nrx_chan; chan++) {
d_chaninfo_rx[chan].assigned_capacity = 0;
d_chaninfo_rx[chan].owner = PMT_NIL;
}
d_rx_chan_mask = 0;
}
usrp_server::~usrp_server()
{
}
void
usrp_server::initial_transition()
{
// the initial transition
}
/*!
* \brief Reads all incoming messages to USRP server from the TX, RX, and the CS
* ports. This drives the state of USRP server and dispatches based on the
* message.
*/
void
usrp_server::handle_message(mb_message_sptr msg)
{
pmt_t event = msg->signal(); // the "name" of the message
pmt_t port_id = msg->port_id(); // which port it came in on
pmt_t data = msg->data();
pmt_t invocation_handle;
pmt_t metadata = msg->metadata();
pmt_t status;
long port;
if (pmt_eq(event, s_shutdown)) // ignore (for now)
return;
invocation_handle = pmt_nth(0, data);
if (0){
std::cout << "[USRP_SERVER] event: " << event << std::endl;
std::cout << "[USRP_SERVER] port_id: " << port_id << std::endl;
}
// It would be nice if this were all table driven, and we could compute our
// state transition as f(current_state, port_id, signal)
// A message from the USRP CS, which should *only* be responses
//
// It is important that this set come before checking messages of any other
// components. This is since we always want to listen to the low level USRP
// server, even if we aren't initialized we are waiting for responses to
// become initialized. Likewise, after the usrp_server is "closed", we still
// want to pass responses back from the low level.
//---------------- USRP RESPONSE ---------------//
if (pmt_eq(port_id, d_cs_usrp->port_symbol())) {
//-------------- USRP OPEN ------------------//
if(pmt_eq(event, s_response_usrp_open)) {
// pass the response back over the regular CS port
pmt_t status = pmt_nth(1, data);
d_cs->send(s_response_open, pmt_list2(invocation_handle, status));
//reset_all_registers();
//initialize_registers();
if(pmt_eqv(status,PMT_T)) {
d_opened = true;
d_defer = false;
recall_defer_queue();
}
return;
}
//------------- USRP CLOSE -------------------//
else if (pmt_eq(event, s_response_usrp_close)) {
pmt_t status = pmt_nth(1, data);
d_cs->send(s_response_close, pmt_list2(invocation_handle, status));
if(pmt_eqv(status,PMT_T)) {
d_opened = false;
d_defer = false;
reset_channels();
recall_defer_queue();
}
return;
}
//--------------- USRP WRITE --------------//
else if (pmt_eq(event, s_response_usrp_write)) {
pmt_t status = pmt_nth(1, data);
long channel = pmt_to_long(pmt_nth(2, data));
long port;
// Do not report back responses if they were generated from a
// command packet
if(channel == CONTROL_CHAN)
return;
// Find the port through the owner of the channel
if((port = tx_port_index(d_chaninfo_tx[channel].owner)) !=-1 ){
d_tx[port]->send(s_response_xmit_raw_frame,
pmt_list2(invocation_handle, status));
return;
}
}
//--------------- USRP READ ---------------//
else if (pmt_eq(event, s_response_usrp_read)) {
pmt_t status = pmt_nth(1, data);
if(!pmt_eqv(status, PMT_T)) {
std::cerr << "[USRP_SERVER] Error receiving packet\n";
return;
}
else {
handle_response_usrp_read(data);
return;
}
}
goto unhandled;
}
// Checking for defer on all other messages
if(d_defer) {
if (verbose)
std::cout << "[USRP_SERVER] Received msg while deferring ("
<< msg->signal() << ")\n";
d_defer_queue.push(msg);
return;
}
//--------- CONTROL / STATUS ------------//
if (pmt_eq(port_id, d_cs->port_symbol())){
//----------- OPEN -----------//
if (pmt_eq(event, s_cmd_open)){
// Reject if already open
if(d_opened) {
d_cs->send(s_response_open, pmt_list2(invocation_handle, s_err_usrp_already_opened));
return;
}
// the parameters are the same to the low level interface, so we just pass 'data' along
d_cs_usrp->send(s_cmd_usrp_open, data);
d_defer = true;
return;
}
//---------- CLOSE -----------//
else if (pmt_eq(event, s_cmd_close)){
if(!d_opened) {
d_cs->send(s_response_close, pmt_list2(invocation_handle, s_err_usrp_already_closed));
return;
}
d_defer = true;
d_cs_usrp->send(s_cmd_usrp_close, pmt_list1(invocation_handle));
return;
}
//---------- MAX CAPACITY ----------//
else if (pmt_eq(event, s_cmd_max_capacity)) {
if(!d_opened) {
d_cs->send(s_response_max_capacity,
pmt_list3(invocation_handle, s_err_usrp_not_opened, pmt_from_long(0)));
return;
}
d_cs->send(s_response_max_capacity,
pmt_list3(invocation_handle,
PMT_T,
pmt_from_long(max_capacity())));
return;
}
//---------- NTX CHAN --------------//
else if (pmt_eq(event, s_cmd_ntx_chan)) {
if(!d_opened) {
d_cs->send(s_response_ntx_chan,
pmt_list3(invocation_handle, s_err_usrp_not_opened, pmt_from_long(0)));
return;
}
d_cs->send(s_response_ntx_chan,
pmt_list3(invocation_handle,
PMT_T,
pmt_from_long(d_ntx_chan)));
return;
}
//---------- NRX CHAN -----------//
else if (pmt_eq(event, s_cmd_nrx_chan)) {
if(!d_opened) {
d_cs->send(s_response_nrx_chan,
pmt_list3(invocation_handle, s_err_usrp_not_opened, pmt_from_long(0)));
return;
}
d_cs->send(s_response_nrx_chan,
pmt_list3(invocation_handle,
PMT_T,
pmt_from_long(d_nrx_chan)));
return;
}
//--------- ALLOCATION? -----------//
else if (pmt_eq(event, s_cmd_current_capacity_allocation)) {
if(!d_opened) {
d_cs->send(s_response_current_capacity_allocation,
pmt_list3(invocation_handle,
s_err_usrp_not_opened,
pmt_from_long(0)));
return;
}
d_cs->send(s_response_current_capacity_allocation,
pmt_list3(invocation_handle,
PMT_T,
pmt_from_long(current_capacity_allocation())));
return;
}
goto unhandled;
}
//-------------- TX ---------------//
if ((port = tx_port_index(port_id)) != -1) {
//------------ ALLOCATE (TX) ----------------//
if (pmt_eq(event, s_cmd_allocate_channel)){
if(!d_opened) {
d_tx[port]->send(s_response_allocate_channel,
pmt_list3(invocation_handle,
s_err_usrp_not_opened,
pmt_from_long(0)));
return;
}
handle_cmd_allocate_channel(d_tx[port], d_chaninfo_tx, data);
return;
}
//----------- DEALLOCATE (TX) ---------------//
if (pmt_eq(event, s_cmd_deallocate_channel)) {
if(!d_opened) {
d_tx[port]->send(s_response_deallocate_channel,
pmt_list3(invocation_handle,
s_err_usrp_not_opened,
pmt_from_long(0)));
return;
}
handle_cmd_deallocate_channel(d_tx[port], d_chaninfo_tx, data);
return;
}
//-------------- XMIT RAW FRAME -----------------/
if (pmt_eq(event, s_cmd_xmit_raw_frame)){
if(!d_opened) {
d_tx[port]->send(s_response_xmit_raw_frame,
pmt_list2(invocation_handle, s_err_usrp_not_opened));
return;
}
handle_cmd_xmit_raw_frame(d_tx[port], d_chaninfo_tx, data);
return;
}
//-------------- CONTROL PACKET -----------------/
if (pmt_eq(event, s_cmd_to_control_channel)) {
if(!d_opened) {
d_tx[port]->send(s_response_xmit_raw_frame,
pmt_list2(invocation_handle, s_err_usrp_not_opened));
return;
}
handle_cmd_to_control_channel(d_tx[port], d_chaninfo_tx, data);
return;
}
goto unhandled;
}
//-------------- RX ---------------//
if ((port = rx_port_index(port_id)) != -1) {
//------------ ALLOCATE (RX) ----------------//
if (pmt_eq(event, s_cmd_allocate_channel)) {
if(!d_opened) {
d_rx[port]->send(s_response_allocate_channel,
pmt_list3(invocation_handle,
s_err_usrp_not_opened,
pmt_from_long(0)));
return;
}
handle_cmd_allocate_channel(d_rx[port], d_chaninfo_rx, data);
return;
}
//----------- DEALLOCATE (RX) ---------------//
if (pmt_eq(event, s_cmd_deallocate_channel)) {
if(!d_opened) {
d_rx[port]->send(s_response_deallocate_channel,
pmt_list3(invocation_handle,
s_err_usrp_not_opened,
pmt_from_long(0)));
return;
}
handle_cmd_deallocate_channel(d_rx[port], d_chaninfo_rx, data);
return;
}
//-------------- START RECV ----------------//
if (pmt_eq(event, s_cmd_start_recv_raw_samples)) {
if(!d_opened) {
d_rx[port]->send(s_response_recv_raw_samples,
pmt_list2(invocation_handle, s_err_usrp_not_opened));
return;
}
handle_cmd_start_recv_raw_samples(d_rx[port], d_chaninfo_rx, data);
return;
}
//-------------- STOP RECV ----------------//
if (pmt_eq(event, s_cmd_stop_recv_raw_samples)) {
if(!d_opened)
return;
// FIX ME : no response for stopping? even if error? (permissions)
handle_cmd_stop_recv_raw_samples(d_rx[port], d_chaninfo_rx, data);
return;
}
goto unhandled;
}
unhandled:
std::cout << "[USRP_SERVER] unhandled msg: " << msg << std::endl;
}
/*!
* \brief Takes a port_symbol() as parameter \p port_id and is used to determine
* if the port is a TX port, or to find an index in the d_tx vector which stores
* the port.
*
* \returns -1 if \p port_id is not in the d_tx vector (i.e., it's not a TX
* port), otherwise returns an index in the d_tx vector which stores the port.
*/
int usrp_server::tx_port_index(pmt_t port_id) {
for(int i=0; i < (int) d_tx.size(); i++)
if(pmt_eq(d_tx[i]->port_symbol(), port_id))
return i;
return -1;
}
/*!
* \brief Takes a port_symbol() as parameter \p port_id and is used to determine
* if the port is an RX port, or to find an index in the d_rx vector which
* stores the port.
*
* \returns -1 if \p port_id is not in the d_rx vector (i.e., it's not an RX
* port), otherwise returns an index in the d_rx vector which stores the port.
*/
int usrp_server::rx_port_index(pmt_t port_id) {
for(int i=0; i < (int) d_rx.size(); i++)
if(pmt_eq(d_rx[i]->port_symbol(), port_id))
return i;
return -1;
}
/*!
* \brief Determines the current total capacity allocated by all RX and TX
* channels.
*
* \returns the total allocated capacity
*/
long usrp_server::current_capacity_allocation() {
long capacity = 0;
for(int chan=0; chan < d_ntx_chan; chan++)
capacity += d_chaninfo_tx[chan].assigned_capacity;
for(int chan=0; chan < d_nrx_chan; chan++)
capacity += d_chaninfo_rx[chan].assigned_capacity;
return capacity;
}
/*!
* \brief Called by the handle_message() method if the incoming message to
* usrp_server is to allocate a channel (cmd-allocate-channel). The method
* checks if the requested capacity exists and if so it will reserve it for the
* caller on the channel that is returned via a response-allocate-channel
* signal.
*/
void
usrp_server::handle_cmd_allocate_channel(
mb_port_sptr port,
std::vector<struct channel_info> &chan_info,
pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
long rqstd_capacity = pmt_to_long(pmt_nth(1, data));
long chan;
// Check capacity exists
if((D_USB_CAPACITY - current_capacity_allocation()) < rqstd_capacity) {
// no capacity available
port->send(s_response_allocate_channel,
pmt_list3(invocation_handle,
s_err_requested_capacity_unavailable,
PMT_NIL));
return;
}
// Find a free channel, assign the capacity and respond
for(chan=0; chan < (long)chan_info.size(); chan++) {
if(verbose)
std::cout << "[USRP_SERVER] Checking chan: " << chan
<< " owner " << chan_info[chan].owner
<< " size " << chan_info.size()
<< std::endl;
if(chan_info[chan].owner == PMT_NIL) {
chan_info[chan].owner = port->port_symbol();
chan_info[chan].assigned_capacity = rqstd_capacity;
port->send(s_response_allocate_channel,
pmt_list3(invocation_handle,
PMT_T,
pmt_from_long(chan)));
if(verbose)
std::cout << "[USRP_SERVER] Assigning channel: " << chan
<< " to " << chan_info[chan].owner
<< std::endl;
return;
}
}
if (verbose)
std::cout << "[USRP_SERVER] Couldnt find a TX chan\n";
// no free TX chan found
port->send(s_response_allocate_channel,
pmt_list3(invocation_handle,
s_err_channel_unavailable,
PMT_NIL));
return;
}
/*!
* \brief Called by the handle_message() method if the incoming message to
* usrp_server is to deallocate a channel (cmd-deallocate-channel). The method
* ensures that the sender of the signal owns the channel and that the channel
* number is valid. A response-deallocate-channel signal is sent back with the
* result of the deallocation.
*/
void
usrp_server::handle_cmd_deallocate_channel(
mb_port_sptr port,
std::vector<struct channel_info> &chan_info,
pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
long channel = pmt_to_long(pmt_nth(1, data));
// Ensure the channel is valid and the caller owns the port
if(!check_valid(port, channel, chan_info,
pmt_list2(s_response_deallocate_channel, invocation_handle)))
return;
chan_info[channel].assigned_capacity = 0;
chan_info[channel].owner = PMT_NIL;
port->send(s_response_deallocate_channel,
pmt_list2(invocation_handle,
PMT_T));
return;
}
/*!
* \brief Called by the handle_message() method if the incoming message to
* usrp_server is to transmit a frame (cmd-xmit-raw-frame). The method
* allocates enough memory to support a burst of packets which contain the frame
* over the bus of the frame, sets the packet headers, and sends a signal to the
* lower block for the data (packets) to be written to the bus.
*
* The \p port the command was sent on and the channel info (\p chan_info) of
* the channel the frame is to be transmitted on are passed to ensure that the
* caller owns the channel.
*
* The \p data parameter is in the format of a cmd-xmit-raw-frame signal.
*
* The properties
*/
void usrp_server::handle_cmd_xmit_raw_frame(
mb_port_sptr port,
std::vector<struct channel_info> &chan_info,
pmt_t data)
{
size_t n_bytes, psize;
long max_payload_len = transport_pkt::max_payload();
pmt_t invocation_handle = pmt_nth(0, data);
long channel = pmt_to_long(pmt_nth(1, data));
const void *samples = pmt_uniform_vector_elements(pmt_nth(2, data), n_bytes);
long timestamp = pmt_to_long(pmt_nth(3, data));
pmt_t properties = pmt_nth(4, data);
// Ensure the channel is valid and the caller owns the port
if(!check_valid(port, channel, chan_info,
pmt_list2(s_response_xmit_raw_frame, invocation_handle)))
return;
// Read information from the properties of the packet
bool carrier_sense = false;
if(pmt_is_dict(properties)) {
// Check if carrier sense is enabled for the frame
if(pmt_t p_carrier_sense = pmt_dict_ref(properties,
pmt_intern("carrier-sense"),
PMT_NIL)) {
if(pmt_eqv(p_carrier_sense, PMT_T))
carrier_sense = true;
}
}
// Determine the number of packets to allocate contiguous memory for
// bursting over the USB and get a pointer to the memory to be used in
// building the packets
long n_packets =
static_cast<long>(std::ceil(n_bytes / (double)max_payload_len));
pmt_t v_packets = pmt_make_u8vector(sizeof(transport_pkt) * n_packets, 0);
transport_pkt *pkts =
(transport_pkt *) pmt_u8vector_writable_elements(v_packets, psize);
for(int n=0; n < n_packets; n++) {
long payload_len =
std::min((long)(n_bytes-(n*max_payload_len)), (long)max_payload_len);
if(n == 0) { // first packet gets start of burst flag and timestamp
if(carrier_sense)
pkts[n].set_header(pkts[n].FL_START_OF_BURST
| pkts[n].FL_CARRIER_SENSE,
channel, 0, payload_len);
else
pkts[n].set_header(pkts[n].FL_START_OF_BURST, channel, 0, payload_len);
pkts[n].set_timestamp(timestamp);
} else {
pkts[n].set_header(0, channel, 0, payload_len);
pkts[n].set_timestamp(0xffffffff);
}
memcpy(pkts[n].payload(),
(uint8_t *)samples+(max_payload_len * n),
payload_len);
}
pkts[n_packets-1].set_end_of_burst(); // set the last packet's end of burst
if (verbose && 0)
std::cout << "[USRP_SERVER] Received raw frame invocation: "
<< invocation_handle << std::endl;
// The actual response to the write will be generated by a
// s_response_usrp_write since we cannot determine whether to transmit was
// successful until we hear from the lower layers.
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packets));
return;
}
/*!
* \brief Called by the handle_message() method to parse incoming control/status
* signals (cmd-to-control-channel).
*
* The \p port the command was sent on and the channel info (\p chan_info) of
* the channel are passed to ensure that the caller owns the channel.
*
* The \p data parameter is in the format of a PMT list, where each element
* follows the format of a control/status signal (i.e. op-ping-fixed).
*
* The method will parse all of the C/S commands included in \p data and place
* the commands in to a lower level packet sent to the control channel. The
* method will pack as many commands as possible in t oa single packet, and once
* it is fill generate as many lower level packets as needed.
*
* Anything that needs to be returned to the sender of the signal (i.e. the
* value of a register) will be generated by the parse_control_pkt() method as
* the responses to the commands are read back from the USRP.
*/
void usrp_server::handle_cmd_to_control_channel(
mb_port_sptr port,
std::vector<struct channel_info> &chan_info,
pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t subpackets = pmt_nth(1, data);
long n_subpkts = pmt_length(subpackets);
long curr_subpkt = 0;
size_t psize;
long payload_len = 0;
long channel = CONTROL_CHAN;
if(verbose)
std::cout << "[USRP_SERVER] Handling " << n_subpkts << " commands\n";
// The design of the following code is optimized for simplicity, not
// performance. To performance optimize this code, the total size in bytes
// needed for all of the CS packets is needed to allocate contiguous memory
// which contains the USB packets for bursting over the bus. However to do
// this the packets subpackets would need to be parsed twice and their sizes
// would need to be determined.
//
// The approach taken is to keep parsing the subpackets and putting them in to
// USB packets. Once the USB packet is full, a write is sent for it and
// another packet is created.
//
// The subpacket creation methods will return false if the subpacket will not
// fit in to the current USB packet. In these cases a new USB packet is
// created and the old is sent.
new_packet:
// This code needs to become "smart" and only make a new packet when full
pmt_t v_packet = pmt_make_u8vector(sizeof(transport_pkt), 0);
transport_pkt *pkt = (transport_pkt *) pmt_u8vector_writable_elements(v_packet, psize);
payload_len = 0;
pkt->set_header(0, channel, 0, payload_len);
pkt->set_timestamp(0xffffffff);
while(curr_subpkt < n_subpkts) {
pmt_t subp = pmt_nth(curr_subpkt, subpackets);
pmt_t subp_cmd = pmt_nth(0, subp);
pmt_t subp_data = pmt_nth(1, subp);
//--------- PING FIXED --------------//
if(pmt_eq(subp_cmd, s_op_ping_fixed)) {
long urid = pmt_to_long(pmt_nth(0, subp_data));
long pingval = pmt_to_long(pmt_nth(1, subp_data));
// USRP server sets request ID's to keep track of which application gets
// what response back. To allow a full 6-bits for an RID to the user, we
// keep a mapping and replace the RID's as the packets go in and out. If
// there are no RID's available, the command is thrown away silently.
long srid;
if((srid = next_rid()) == -1)
goto subpkt_bail;
// We use a vector to store the owner of the ping request and will use it
// to send the request on any RX port they own.
d_rids[srid].owner = port->port_symbol();
d_rids[srid].user_rid = urid;
// Adds a ping after the previous command in the pkt
if(!pkt->cs_ping(srid, pingval))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
// Return the RID
d_rids[srid].owner = PMT_NIL;
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received ping command request"
<< " assigning RID " << srid << std::endl;
}
//----------- WRITE REG ---------------//
if(pmt_eq(subp_cmd, s_op_write_reg)) {
long reg_num = pmt_to_long(pmt_nth(0, subp_data));
long val = pmt_to_long(pmt_nth(1, subp_data));
if(!pkt->cs_write_reg(reg_num, val))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received write register request "
<< "("
<< "Reg: " << reg_num << ", "
<< "Val: " << val
<< ")\n";
}
//------- WRITE REG MASKED ----------//
if(pmt_eq(subp_cmd, s_op_write_reg_masked)) {
long reg_num = pmt_to_long(pmt_nth(0, subp_data));
long val = pmt_to_long(pmt_nth(1, subp_data));
long mask = pmt_to_long(pmt_nth(2, subp_data));
if(!pkt->cs_write_reg_masked(reg_num, val, mask))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received write register masked request\n";
}
//------------ READ REG --------------//
if(pmt_eq(subp_cmd, s_op_read_reg)) {
long urid = pmt_to_long(pmt_nth(0, subp_data));
long reg_num = pmt_to_long(pmt_nth(1, subp_data));
long srid;
if((srid = next_rid()) == -1)
goto subpkt_bail;
d_rids[srid].owner = port->port_symbol();
d_rids[srid].user_rid = urid;
if(!pkt->cs_read_reg(srid, reg_num))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
// Return the rid
d_rids[srid].owner = PMT_NIL;
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received read register request"
<< " assigning RID " << srid << std::endl;
}
//------------ DELAY --------------//
if(pmt_eq(subp_cmd, s_op_delay)) {
long ticks = pmt_to_long(pmt_nth(0, subp_data));
if(!pkt->cs_delay(ticks))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received delay request of "
<< ticks << " ticks\n";
}
//--------- I2C WRITE -----------//
// FIXME: could check that byte count does not exceed 2^8 which
// is the max length in the subpacket for # of bytes to read.
if(pmt_eq(subp_cmd, s_op_i2c_write)) {
long i2c_addr = pmt_to_long(pmt_nth(0, subp_data));
pmt_t data = pmt_nth(1, subp_data);
// Get a readable address to the data which also gives us the length
size_t data_len;
uint8_t *i2c_data = (uint8_t *) pmt_u8vector_writable_elements(data, data_len);
// Make the USB packet
if(!pkt->cs_i2c_write(i2c_addr, i2c_data, data_len))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received I2C write\n";
}
//----------- I2C Read -------------//
if(pmt_eq(subp_cmd, s_op_i2c_read)) {
long urid = pmt_to_long(pmt_nth(0, subp_data));
long i2c_addr = pmt_to_long(pmt_nth(1, subp_data));
long i2c_bytes = pmt_to_long(pmt_nth(2, subp_data));
long srid;
if((srid = next_rid()) == -1)
goto subpkt_bail;
d_rids[srid].owner = port->port_symbol();
d_rids[srid].user_rid = urid;
if(!pkt->cs_i2c_read(srid, i2c_addr, i2c_bytes))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
d_rids[srid].owner = PMT_NIL;
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received I2C read\n";
}
//--------- SPI WRITE -----------//
if(pmt_eq(subp_cmd, s_op_spi_write)) {
long enables = pmt_to_long(pmt_nth(0, subp_data));
long format = pmt_to_long(pmt_nth(1, subp_data));
long opt = pmt_to_long(pmt_nth(2, subp_data));
pmt_t data = pmt_nth(3, subp_data);
// Get a readable address to the data which also gives us the length
size_t data_len;
uint8_t *spi_data = (uint8_t *) pmt_u8vector_writable_elements(data, data_len);
// Make the USB packet
if(!pkt->cs_spi_write(enables, format, opt, spi_data, data_len))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received SPI write\n";
}
//--------- SPI READ -----------//
if(pmt_eq(subp_cmd, s_op_spi_read)) {
long urid = pmt_to_long(pmt_nth(0, subp_data));
long enables = pmt_to_long(pmt_nth(1, subp_data));
long format = pmt_to_long(pmt_nth(2, subp_data));
long opt = pmt_to_long(pmt_nth(3, subp_data));
long n_bytes = pmt_to_long(pmt_nth(4, subp_data));
long srid;
if((srid = next_rid()) == -1)
goto subpkt_bail;
d_rids[srid].owner = port->port_symbol();
d_rids[srid].user_rid = urid;
// Make the USB packet
if(!pkt->cs_spi_read(srid, enables, format, opt, n_bytes))
{
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
// Return the rid
d_rids[srid].owner = PMT_NIL;
goto new_packet;
}
if(verbose)
std::cout << "[USRP_SERVER] Received SPI read\n";
}
subpkt_bail:
curr_subpkt++;
}
// If the current packets length is > 0, we know there are subpackets that
// need to be sent out still.
if(pkt->payload_len() > 0)
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(invocation_handle,
pmt_from_long(channel),
v_packet));
return;
}
/*!
* \brief Called by the handle_message() method when the incoming signal is a
* command to start reading samples from the USRP (cmd-start-recv-raw-samples).
*
* The \p port the command was sent on and the channel info (\p chan_info) of
* the channel are passed to ensure that the caller owns the channel.
*
* The \p data parameter should be in the format of a cmd-start-recv-raw-samples
* command where the first element in the list is an invocation handle, and the
* second is the channel the signal generator wants to receive the samples on.
*/
void
usrp_server::handle_cmd_start_recv_raw_samples(
mb_port_sptr port,
std::vector<struct channel_info> &chan_info,
pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
long channel = pmt_to_long(pmt_nth(1, data));
// Ensure the channel is valid and the caller owns the port
if(!check_valid(port, channel, chan_info,
pmt_list2(s_response_xmit_raw_frame, invocation_handle)))
return;
// Already started receiving samples? (another start before a stop)
// Check the RX channel bitmask.
if(d_rx_chan_mask & (1 << channel)) {
port->send(s_response_recv_raw_samples,
pmt_list5(invocation_handle,
s_err_already_receiving,
PMT_NIL,
PMT_NIL,
PMT_NIL));
return;
}
// We only need to generate a 'start reading' command down to the
// low level interface if no other channel is already reading
//
// We carry this over the CS interface because the lower level
// interface does not care about the channel, we only demux it
// at the usrp_server on responses.
if(d_rx_chan_mask == 0) {
if(verbose)
std::cout << "[USRP_SERVER] Sending read request down to start recv\n";
d_cs_usrp->send(s_cmd_usrp_start_reading, pmt_list1(invocation_handle));
}
d_rx_chan_mask |= 1<<channel;
return;
}
/*!
* \brief Called by the handle_message() method when the incoming signal is to
* stop receiving samples from the USRP (cmd-stop-recv-raw-samples).
*
* The \p port the command was sent on and the channel info (\p chan_info) of
* the channel are passed to ensure that the caller owns the channel.
*
* The \p data parameter should be in the format of a cmd-stop-recv-raw-samples
* command where the first element in the list is an invocation handle, and the
* second is the channel the signal generator wants to stop receiving the
* samples from.
*/
void
usrp_server::handle_cmd_stop_recv_raw_samples(
mb_port_sptr port,
std::vector<struct channel_info> &chan_info,
pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
long channel = pmt_to_long(pmt_nth(1, data));
// FIX ME : we have no responses to send an error...
// Ensure the channel is valid and the caller owns the port
//if(!check_valid(port, channel, chan_info,
// pmt_list2(s_response_xmit_raw_frame, invocation_handle)))
// return;
// Remove this hosts bit from the receiver mask
d_rx_chan_mask &= ~(1<<channel);
// We only need to generate a 'start reading' command down to the
// low level interface if no other channel is already reading
//
// We carry this over the CS interface because the lower level
// interface does not care about the channel, we only demux it
// at the usrp_server on responses.
if(d_rx_chan_mask == 0) {
if(verbose)
std::cout << "[USRP_SERVER] Sending stop reading request down\n";
d_cs_usrp->send(s_cmd_usrp_stop_reading, pmt_list1(invocation_handle));
}
return;
}
/*!
* \brief Called by the handle_message() method when an incoming signal is
* generated to USRP server that contains raw samples from the USRP. This
* method generates the response-recv-raw-samples signals that are the result of
* a cmd-start-recv-raw-samples signal.
*
* The raw lower-level packet is extracted from \p data, where the format for \p
* data is a PMT list. The PMT \p data list should contain an invocation handle
* as the first element, the status of the lower-level read as the second
* element, and a uniform vector representation of the packets as the third
* element.
*
* The packet contains a channel field that the samples are destined to, and the
* method determines where to send the samples based on this channel since each
* channel has an associated port which allocated it.
*/
void
usrp_server::handle_response_usrp_read(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t v_pkt = pmt_nth(2, data);
size_t n_bytes;
size_t ignore;
if (d_fake_rx) {
pmt_t pkt = pmt_nth(2, data);
d_rx[0]->send(s_response_recv_raw_samples,
pmt_list5(PMT_F,
PMT_T,
pkt,
pmt_from_long(0xffff),
PMT_NIL));
return;
}
// Extract the packet and return appropriately
transport_pkt *pkt = (transport_pkt *) pmt_u8vector_writable_elements(v_pkt, n_bytes);
// The channel is used to find the port to pass the samples on
long channel = pkt->chan();
long payload_len = pkt->payload_len();
long port;
// Ignore packets which seem to have incorrect size or size 0
if(payload_len > pkt->max_payload() || payload_len == 0)
return;
// If the packet is a C/S packet, parse it separately
if(channel == CONTROL_CHAN) {
parse_control_pkt(invocation_handle, pkt);
return;
}
if((port = rx_port_index(d_chaninfo_rx[channel].owner)) == -1)
return; // Don't know where to send the sample... possibility on abrupt close
pmt_t v_samples = pmt_make_u8vector(payload_len, 0);
uint8_t *samples = pmt_u8vector_writable_elements(v_samples, ignore);
memcpy(samples, pkt->payload(), payload_len);
// Build a properties dictionary to store things such as the RSSI
pmt_t properties = pmt_make_dict();
pmt_dict_set(properties,
pmt_intern("rssi"),
pmt_from_long(pkt->rssi()));
if(pkt->overrun())
pmt_dict_set(properties,
pmt_intern("overrun"),
PMT_T);
if(pkt->underrun())
pmt_dict_set(properties,
pmt_intern("underrun"),
PMT_T);
d_rx[port]->send(s_response_recv_raw_samples,
pmt_list6(invocation_handle,
status,
v_samples,
pmt_from_long(pkt->timestamp()),
pmt_from_long(channel),
properties));
return;
}
/*!
* \brief Called by handle_response_usrp_read() when the incoming packet has a
* channel of CONTROL_CHAN. This means that the incoming packet contains a
* response for a command sent to the control channel, which this method will
* parse.
*
* The \p pkt parameter is a pointer to the full packet (transport_pkt) in
* memory.
*
* Given that all commands sent to the control channel that require responses
* will carry an RID (request ID), the method will use the RID passed back with
* the response to determine which port the response should be sent on.
*/
void
usrp_server::parse_control_pkt(pmt_t invocation_handle, transport_pkt *pkt)
{
long payload_len = pkt->payload_len();
long curr_payload = 0;
long port;
// We dispatch based on the control packet type, however we can extract the
// opcode and the length immediately which is consistent in all responses.
//
// Since each control packet can have multiple responses, we keep reading the
// lengths of each subpacket until we reach the payload length.
while(curr_payload < payload_len) {
pmt_t sub_packet = pkt->read_subpacket(curr_payload);
pmt_t op_symbol = pmt_nth(0, sub_packet);
int len = pkt->cs_len(curr_payload);
if(verbose)
std::cout << "[USRP_SERVER] Parsing subpacket "
<< op_symbol << " ... length " << len << std::endl;
//----------------- PING RESPONSE ------------------//
if(pmt_eq(op_symbol, s_op_ping_fixed_reply)) {
long srid = pmt_to_long(pmt_nth(1, sub_packet));
pmt_t pingval = pmt_nth(2, sub_packet);
long urid = d_rids[srid].user_rid;
if(verbose)
std::cout << "[USRP_SERVER] Found ping response "
<< "("
<< "URID: " << urid << ", "
<< "SRID: " << srid << ", "
<< "VAL: " << pingval
<< ")\n";
// Do some bounds checking incase of bogus/corrupt responses
if(srid > D_MAX_RID)
return;
pmt_t owner = d_rids[srid].owner;
// Return the RID
d_rids[srid].owner = PMT_NIL;
// FIXME: should be 1 response for all subpackets here ?
if((port = tx_port_index(owner)) != -1)
d_tx[port]->send(s_response_from_control_channel,
pmt_list4(invocation_handle,
PMT_T,
pmt_list2(s_op_ping_fixed_reply, // subp
pmt_list2(pmt_from_long(urid),
pingval)),
pmt_from_long(pkt->timestamp())));
}
//----------------- READ REG RESPONSE ------------------//
else if(pmt_eq(op_symbol, s_op_read_reg_reply)) {
long srid = pmt_to_long(pmt_nth(1, sub_packet));
pmt_t reg_num = pmt_nth(2, sub_packet);
pmt_t reg_val = pmt_nth(3, sub_packet);
long urid = d_rids[srid].user_rid;
if(verbose)
std::cout << "[USRP_SERVER] Found read register response "
<< "("
<< "URID: " << urid << ", "
<< "SRID: " << srid << ", "
<< "REG: " << reg_num << ", "
<< "VAL: " << reg_val
<< ")\n";
// Do some bounds checking to avoid seg faults
if(srid > D_MAX_RID)
return;
pmt_t owner = d_rids[srid].owner;
// Return the RID
d_rids[srid].owner = PMT_NIL;
// FIXME: should be 1 response for all subpackets here ?
if((port = tx_port_index(owner)) != -1)
d_tx[port]->send(s_response_from_control_channel,
pmt_list4(invocation_handle,
PMT_T,
pmt_list2(s_op_read_reg_reply, // subp
pmt_list3(pmt_from_long(urid),
reg_num,
reg_val)),
pmt_from_long(pkt->timestamp())));
}
//------------------ I2C READ REPLY -------------------//
else if(pmt_eq(op_symbol, s_op_i2c_read_reply)) {
long srid = pmt_to_long(pmt_nth(1, sub_packet));
pmt_t i2c_addr = pmt_nth(2, sub_packet);
pmt_t i2c_data = pmt_nth(3, sub_packet);
long urid = d_rids[srid].user_rid;
if(verbose)
std::cout << "[USRP_SERVER] Found i2c read reply "
<< "("
<< "URID: " << urid << ", "
<< "SRID: " << srid << ", "
<< "Addr: " << i2c_addr << ", "
<< "Data: " << i2c_data
<< ")\n";
// Do some bounds checking to avoid seg faults
if(srid > D_MAX_RID)
return;
pmt_t owner = d_rids[srid].owner;
// Return the RID
d_rids[srid].owner = PMT_NIL;
if((port = tx_port_index(owner)) != -1)
d_tx[port]->send(s_response_from_control_channel,
pmt_list4(invocation_handle,
PMT_T,
pmt_list2(s_op_i2c_read_reply,
pmt_list3(pmt_from_long(urid),
i2c_addr,
i2c_data)),
pmt_from_long(pkt->timestamp())));
}
//------------------ SPI READ REPLY -------------------//
else if(pmt_eq(op_symbol, s_op_spi_read_reply)) {
long srid = pmt_to_long(pmt_nth(1, sub_packet));
pmt_t spi_data = pmt_nth(2, sub_packet);
long urid = d_rids[srid].user_rid;
if(verbose)
std::cout << "[USRP_SERVER] Found SPI read reply "
<< "("
<< "URID: " << urid << ", "
<< "SRID: " << srid << ", "
<< "Data: " << spi_data
<< ")\n";
// Bounds check the RID
if(srid > D_MAX_RID)
return;
pmt_t owner = d_rids[srid].owner;
// Return the RID
d_rids[srid].owner = PMT_NIL;
if((port = tx_port_index(owner)) != -1)
d_tx[port]->send(s_response_from_control_channel,
pmt_list4(invocation_handle,
PMT_T,
pmt_list2(s_op_spi_read_reply,
pmt_list2(pmt_from_long(urid),
spi_data)),
pmt_from_long(pkt->timestamp())));
}
// Each subpacket has an unaccounted for 2 bytes which is the opcode
// and the length field
curr_payload += len + 2;
// All subpackets are 32-bit aligned
int align_offset = 4 - (curr_payload % 4);
if(align_offset != 4)
curr_payload += align_offset;
}
}
/*!
* \brief Used to recall all incoming signals that were deferred when USRP
* server was in the initialization state.
*/
void
usrp_server::recall_defer_queue()
{
std::vector<mb_message_sptr> recall;
while(!d_defer_queue.empty()) {
recall.push_back(d_defer_queue.front());
d_defer_queue.pop();
}
// Parse the messages that were queued while waiting for an open response
for(int i=0; i < (int)recall.size(); i++)
handle_message(recall[i]);
return;
}
/*!
* \brief Commonly called by any method which handles outgoing frames or control
* packets to the USRP to check if the port on which the signal was sent owns
* the channel the outgoing packet will be associated with. This helps ensure
* that applications do not send data on other application's ports.
*
* The \p port parameter is the port symbol that the caller wishes to determine
* owns the channel specified by \p chan_info.
*
* The \p signal_info parameter is a PMT list containing two elements: the
* response signal to use if the permissions are invalid, and the invocation
* handle that was passed. This allows the method to generate detailed failure
* responses to signals without having to return some sort of structured
* information which the caller must then parse and interpret to determine the
* failure type.
*
* \returns true if \p port owns the channel specified by \p chan_info, false
* otherwise.
*/
bool
usrp_server::check_valid(mb_port_sptr port,
long channel,
std::vector<struct channel_info> &chan_info,
pmt_t signal_info)
{
pmt_t response_signal = pmt_nth(0, signal_info);
pmt_t invocation_handle = pmt_nth(1, signal_info);
// not a valid channel number?
if(channel >= (long)chan_info.size() && channel != CONTROL_CHAN) {
port->send(response_signal,
pmt_list2(invocation_handle,
s_err_channel_invalid));
if(verbose)
std::cout << "[USRP_SERVER] Invalid channel number for event "
<< response_signal << std::endl;
return false;
}
// not the owner of the port?
if(chan_info[channel].owner != port->port_symbol()) {
port->send(response_signal,
pmt_list2(invocation_handle,
s_err_channel_permission_denied));
if(verbose)
std::cout << "[USRP_SERVER] Invalid permissions"
<< " for " << response_signal
<< " from " << port->port_symbol()
<< " proper owner is " << chan_info[channel].owner
<< " on channel " << channel
<< " invocation " << invocation_handle
<< std::endl;
return false;
}
return true;
}
/*!
* \brief Finds the next available RID for internal USRP server use with control
* and status packets.
*
* \returns the next valid RID or -1 if no more RIDs are available.
*/
long
usrp_server::next_rid()
{
for(int i = 0; i < D_MAX_RID; i++)
if(pmt_eqv(d_rids[i].owner, PMT_NIL))
return i;
if(verbose)
std::cout << "[USRP_SERVER] No RIDs left\n";
return -1;
}
/*!
* \brief Called by handle_message() when USRP server gets a response that the
* USRP was opened successfully to initialize the registers using the new
* register read/write control packets.
*/
void
usrp_server::initialize_registers()
{
// We use handle_cmd_to_control_channel() to create the register writes using
// PMT_NIL as the response port to tell usrp_server not to pass the response
// up to any application.
if(verbose)
std::cout << "[USRP_SERVER] Initializing registers...\n";
// RX mode to normal (0)
set_register(FR_MODE, 0);
// FPGA debugging?
if(d_fpga_debug) {
set_register(FR_DEBUG_EN, 1);
// FIXME: need to figure out exact register writes to control daughterboard
// pins that need to be written to
} else {
set_register(FR_DEBUG_EN, 0);
}
// Set the transmit sample rate divisor, which is 4-1
set_register(FR_TX_SAMPLE_RATE_DIV, 3);
// Dboard IO buffer and register settings
set_register(FR_OE_0, (0xffff << 16) | 0x0000);
set_register(FR_IO_0, (0xffff << 16) | 0x0000);
set_register(FR_OE_1, (0xffff << 16) | 0x0000);
set_register(FR_IO_1, (0xffff << 16) | 0x0000);
set_register(FR_OE_2, (0xffff << 16) | 0x0000);
set_register(FR_IO_2, (0xffff << 16) | 0x0000);
set_register(FR_OE_3, (0xffff << 16) | 0x0000);
set_register(FR_IO_3, (0xffff << 16) | 0x0000);
// zero Tx side Auto Transmit/Receive regs
set_register(FR_ATR_MASK_0, 0);
set_register(FR_ATR_TXVAL_0, 0);
set_register(FR_ATR_RXVAL_0, 0);
set_register(FR_ATR_MASK_1, 0);
set_register(FR_ATR_TXVAL_1, 0);
set_register(FR_ATR_RXVAL_1, 0);
set_register(FR_ATR_MASK_2, 0);
set_register(FR_ATR_TXVAL_2, 0);
set_register(FR_ATR_RXVAL_2, 0);
set_register(FR_ATR_MASK_3, 0);
set_register(FR_ATR_TXVAL_3, 0);
set_register(FR_ATR_RXVAL_3, 0);
// Configure TX mux, this is a hacked value
set_register(FR_TX_MUX, 0x00000081);
// Set the interpolation rate, which is the rate divided by 4, minus 1
set_register(FR_INTERP_RATE, (d_interp_tx/4)-1);
// Apparently this register changes again
set_register(FR_TX_MUX, 0x00000981);
// Set the receive sample rate divisor, which is 2-1
set_register(FR_RX_SAMPLE_RATE_DIV, 1);
// DC offset
set_register(FR_DC_OFFSET_CL_EN, 0x0000000f);
// Reset the DC correction offsets
set_register(FR_ADC_OFFSET_0, 0);
set_register(FR_ADC_OFFSET_1, 0);
// Some hard-coded RX configuration
set_register(FR_RX_FORMAT, 0x00000300);
set_register(FR_RX_MUX, 1);
// RX decimation rate is divided by two, then subtract 1
set_register(FR_DECIM_RATE, (d_decim_rx/2)-1);
// More hard coding
set_register(FR_RX_MUX, 0x000e4e41);
// Resetting RX registers
set_register(FR_RX_PHASE_0, 0);
set_register(FR_RX_PHASE_1, 0);
set_register(FR_RX_PHASE_2, 0);
set_register(FR_RX_PHASE_3, 0);
set_register(FR_RX_FREQ_0, 0x28000000);
set_register(FR_RX_FREQ_1, 0);
set_register(FR_RX_FREQ_2, 0);
set_register(FR_RX_FREQ_3, 0);
// Enable debug bus
set_register(FR_DEBUG_EN, 0xf);
set_register(FR_OE_0, -1);
set_register(FR_OE_1, -1);
set_register(FR_OE_2, -1);
set_register(FR_OE_3, -1);
// DEBUGGING
//check_register_initialization();
}
// FIXME: used for debugging to determine if all the registers are actually
// being set correctly
void
usrp_server::check_register_initialization()
{
// RX mode to normal (0)
read_register(FR_MODE);
// FPGA debugging?
if(d_fpga_debug) {
read_register(FR_DEBUG_EN);
// FIXME: need to figure out exact register writes to control daughterboard
// pins that need to be written to
} else {
read_register(FR_DEBUG_EN);
}
// Set the transmit sample rate divisor, which is 4-1
read_register(FR_TX_SAMPLE_RATE_DIV);
// Dboard IO buffer and register settings
read_register(FR_OE_0);
read_register(FR_IO_0);
read_register(FR_OE_1);
read_register(FR_IO_1);
read_register(FR_OE_2);
read_register(FR_IO_2);
read_register(FR_OE_3);
read_register(FR_IO_3);
// zero Tx side Auto Transmit/Receive regs
read_register(FR_ATR_MASK_0);
read_register(FR_ATR_TXVAL_0);
read_register(FR_ATR_RXVAL_0);
read_register(FR_ATR_MASK_1);
read_register(FR_ATR_TXVAL_1);
read_register(FR_ATR_RXVAL_1);
read_register(FR_ATR_MASK_2);
read_register(FR_ATR_TXVAL_2);
read_register(FR_ATR_RXVAL_2);
read_register(FR_ATR_MASK_3);
read_register(FR_ATR_TXVAL_3);
read_register(FR_ATR_RXVAL_3);
// Configure TX mux, this is a hacked value
read_register(FR_TX_MUX);
// Set the interpolation rate, which is the rate divided by 4, minus 1
read_register(FR_INTERP_RATE);
// Apparently this register changes again
read_register(FR_TX_MUX);
// Set the receive sample rate divisor, which is 2-1
read_register(FR_RX_SAMPLE_RATE_DIV);
// DC offset
read_register(FR_DC_OFFSET_CL_EN);
// Reset the DC correction offsets
read_register(FR_ADC_OFFSET_0);
read_register(FR_ADC_OFFSET_1);
// Some hard-coded RX configuration
read_register(FR_RX_FORMAT);
read_register(FR_RX_MUX);
// RX decimation rate is divided by two, then subtract 1
read_register(FR_DECIM_RATE);
// More hard coding
read_register(FR_RX_MUX);
// Resetting RX registers
read_register(FR_RX_PHASE_0);
read_register(FR_RX_PHASE_1);
read_register(FR_RX_PHASE_2);
read_register(FR_RX_PHASE_3);
read_register(FR_RX_FREQ_0);
read_register(FR_RX_FREQ_1);
read_register(FR_RX_FREQ_2);
read_register(FR_RX_FREQ_3);
}
/*!
* \brief Used to generate FPGA register write commands to reset all of the FPGA
* registers to a value of 0.
*/
void
usrp_server::reset_all_registers()
{
for(int i=0; i<64; i++)
set_register(i, 0);
}
/*!
* \brief Used internally by USRP server to generate a control/status packet
* which contains a register write.
*
* The \p reg parameter is the register number that the value \p val will be
* written to.
*/
void
usrp_server::set_register(long reg, long val)
{
size_t psize;
long payload_len = 0;
pmt_t v_packet = pmt_make_u8vector(sizeof(transport_pkt), 0);
transport_pkt *pkt = (transport_pkt *) pmt_u8vector_writable_elements(v_packet, psize);
pkt->set_header(0, CONTROL_CHAN, 0, payload_len);
pkt->set_timestamp(0xffffffff);
pkt->cs_write_reg(reg, val);
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(PMT_NIL,
pmt_from_long(CONTROL_CHAN),
v_packet));
}
/*!
* \brief Used internally by USRP server to generate a control/status packet
* which contains a register read. This is important to use internally so that
* USRP server can bypass the use of RIDs with register reads, as they are not
* needed and it would use up the finite number of RIDs available for use for
* applications to receive responses.
*
* The \p reg parameter is the register number that the value should be read
* from.
*/
void
usrp_server::read_register(long reg)
{
size_t psize;
long payload_len = 0;
pmt_t v_packet = pmt_make_u8vector(sizeof(transport_pkt), 0);
transport_pkt *pkt = (transport_pkt *) pmt_u8vector_writable_elements(v_packet, psize);
pkt->set_header(0, CONTROL_CHAN, 0, payload_len);
pkt->set_timestamp(0xffffffff);
pkt->cs_read_reg(0, reg);
d_cs_usrp->send(s_cmd_usrp_write,
pmt_list3(PMT_NIL,
pmt_from_long(CONTROL_CHAN),
v_packet));
}
REGISTER_MBLOCK_CLASS(usrp_server);
|