1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
|
/* -*- c++ -*- */
/*
* Copyright 2003,2004,2006,2009 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_LIBUSB_1
#include <libusb-1.0/libusb.h>
#else
#include <usb.h>
#endif
#include "usrp_primsi.h"
#include "usrp_commands.h"
#include "usrp_ids.h"
#include "usrp_i2c_addr.h"
#include "fpga_regs_common.h"
#include "fpga_regs_standard.h"
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h> // FIXME should check with autoconf (nanosleep)
#include <algorithm>
#include <ad9862.h>
#include <assert.h>
#include "std_paths.h"
extern "C" {
#include "md5.h"
};
#define VERBOSE 0
using namespace ad9862;
static const int FIRMWARE_HASH_SLOT = 0;
static const int FPGA_HASH_SLOT = 1;
static const int hash_slot_addr[2] = {
USRP_HASH_SLOT_0_ADDR,
USRP_HASH_SLOT_1_ADDR
};
static const char *default_firmware_filename = "std.ihx";
static const char *default_fpga_filename = "std_2rxhb_2tx.rbf";
static char *
find_file (const char *filename, int hw_rev)
{
const char **sp = std_paths;
static char path[1000];
char *s;
s = getenv("USRP_PATH");
if (s) {
snprintf (path, sizeof (path), "%s/rev%d/%s", s, hw_rev, filename);
if (access (path, R_OK) == 0)
return path;
}
while (*sp){
snprintf (path, sizeof (path), "%s/rev%d/%s", *sp, hw_rev, filename);
if (access (path, R_OK) == 0)
return path;
sp++;
}
return 0;
}
static const char *
get_proto_filename(const std::string user_filename, const char *env_var, const char *def)
{
if (user_filename.length() != 0)
return user_filename.c_str();
char *s = getenv(env_var);
if (s && *s)
return s;
return def;
}
static void power_down_9862s (libusb_device_handle *udh);
// ----------------------------------------------------------------
/*
* q must be a real USRP, not an FX2. Return its hardware rev number.
*/
int
usrp_hw_rev (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return desc.bcdDevice & 0x00FF;
}
/*
* q must be a real USRP, not an FX2. Return true if it's configured.
*/
static bool
_usrp_configured_p (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return (desc.bcdDevice & 0xFF00) != 0;
}
bool
usrp_usrp_p (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return (desc.idVendor == USB_VID_FSF
&& desc.idProduct == USB_PID_FSF_USRP);
}
bool
usrp_fx2_p (libusb_device *q)
{
libusb_device_descriptor desc = _get_usb_device_descriptor(q);
return (desc.idVendor == USB_VID_CYPRESS
&& desc.idProduct == USB_PID_CYPRESS_FX2);
}
bool
usrp_usrp0_p (libusb_device *q)
{
return usrp_usrp_p (q) && usrp_hw_rev (q) == 0;
}
bool
usrp_usrp1_p (libusb_device *q)
{
return usrp_usrp_p (q) && usrp_hw_rev (q) == 1;
}
bool
usrp_usrp2_p (libusb_device *q)
{
return usrp_usrp_p (q) && usrp_hw_rev (q) == 2;
}
bool
usrp_unconfigured_usrp_p (libusb_device *q)
{
return usrp_usrp_p (q) && !_usrp_configured_p (q);
}
bool
usrp_configured_usrp_p (libusb_device *q)
{
return usrp_usrp_p (q) && _usrp_configured_p (q);
}
// ----------------------------------------------------------------
libusb_device_handle *
usrp_open_cmd_interface (libusb_device *dev)
{
return usrp_open_interface (dev, USRP_CMD_INTERFACE, USRP_CMD_ALTINTERFACE);
}
libusb_device_handle *
usrp_open_rx_interface (libusb_device *dev)
{
return usrp_open_interface (dev, USRP_RX_INTERFACE, USRP_RX_ALTINTERFACE);
}
libusb_device_handle *
usrp_open_tx_interface (libusb_device *dev)
{
return usrp_open_interface (dev, USRP_TX_INTERFACE, USRP_TX_ALTINTERFACE);
}
// ----------------------------------------------------------------
// write internal ram using Cypress vendor extension
static bool
write_internal_ram (libusb_device_handle *udh, unsigned char *buf,
int start_addr, size_t len)
{
int addr;
int n;
int a;
int quanta = MAX_EP0_PKTSIZE;
for (addr = start_addr; addr < start_addr + (int) len; addr += quanta){
n = len + start_addr - addr;
if (n > quanta)
n = quanta;
a = _usb_control_transfer (udh, 0x40, 0xA0, addr, 0,
(unsigned char*)(buf + (addr - start_addr)), n, 1000);
if (a < 0){
fprintf(stderr,"write_internal_ram failed: %i\n", a);
return false;
}
}
return true;
}
// ----------------------------------------------------------------
// whack the CPUCS register using the upload RAM vendor extension
static bool
reset_cpu (libusb_device_handle *udh, bool reset_p)
{
unsigned char v;
if (reset_p)
v = 1; // hold processor in reset
else
v = 0; // release reset
return write_internal_ram (udh, &v, 0xE600, 1);
}
// ----------------------------------------------------------------
// Load intel format file into cypress FX2 (8051)
static bool
_usrp_load_firmware (libusb_device_handle *udh, const char *filename,
unsigned char hash[USRP_HASH_SIZE])
{
FILE *f = fopen (filename, "ra");
if (f == 0){
perror (filename);
return false;
}
if (!reset_cpu (udh, true)) // hold CPU in reset while loading firmware
goto fail;
char s[1024];
int length;
int addr;
int type;
unsigned char data[256];
unsigned char checksum, a;
unsigned int b;
int i;
while (!feof(f)){
fgets(s, sizeof (s), f); /* we should not use more than 263 bytes normally */
if(s[0]!=':'){
fprintf(stderr,"%s: invalid line: \"%s\"\n", filename, s);
goto fail;
}
sscanf(s+1, "%02x", &length);
sscanf(s+3, "%04x", &addr);
sscanf(s+7, "%02x", &type);
if(type==0){
a=length+(addr &0xff)+(addr>>8)+type;
for(i=0;i<length;i++){
sscanf (s+9+i*2,"%02x", &b);
data[i]=b;
a=a+data[i];
}
sscanf (s+9+length*2,"%02x", &b);
checksum=b;
if (((a+checksum)&0xff)!=0x00){
fprintf (stderr, " ** Checksum failed: got 0x%02x versus 0x%02x\n", (-a)&0xff, checksum);
goto fail;
}
if (!write_internal_ram (udh, data, addr, length))
goto fail;
}
else if (type == 0x01){ // EOF
break;
}
else if (type == 0x02){
fprintf(stderr, "Extended address: whatever I do with it?\n");
fprintf (stderr, "%s: invalid line: \"%s\"\n", filename, s);
goto fail;
}
}
// we jam the hash value into the FX2 memory before letting
// the cpu out of reset. When it comes out of reset it
// may renumerate which will invalidate udh.
if (!usrp_set_hash (udh, FIRMWARE_HASH_SLOT, hash))
fprintf (stderr, "usrp: failed to write firmware hash slot\n");
if (!reset_cpu (udh, false)) // take CPU out of reset
goto fail;
fclose (f);
return true;
fail:
fclose (f);
return false;
}
// ----------------------------------------------------------------
// load fpga
static bool
_usrp_load_fpga (libusb_device_handle *udh, const char *filename,
unsigned char hash[USRP_HASH_SIZE])
{
bool ok = true;
FILE *fp = fopen (filename, "rb");
if (fp == 0){
perror (filename);
return false;
}
unsigned char buf[MAX_EP0_PKTSIZE]; // 64 is max size of EP0 packet on FX2
int n;
usrp_set_led (udh, 1, 1); // led 1 on
// reset FPGA (and on rev1 both AD9862's, thus killing clock)
usrp_set_fpga_reset (udh, 1); // hold fpga in reset
if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_BEGIN, 0, 0) != 0)
goto fail;
while ((n = fread (buf, 1, sizeof (buf), fp)) > 0){
if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_XFER, buf, n) != n)
goto fail;
}
if (write_cmd (udh, VRQ_FPGA_LOAD, 0, FL_END, 0, 0) != 0)
goto fail;
fclose (fp);
if (!usrp_set_hash (udh, FPGA_HASH_SLOT, hash))
fprintf (stderr, "usrp: failed to write fpga hash slot\n");
// On the rev1 USRP, the {tx,rx}_{enable,reset} bits are
// controlled over the serial bus, and hence aren't observed until
// we've got a good fpga bitstream loaded.
usrp_set_fpga_reset (udh, 0); // fpga out of master reset
// now these commands will work
ok &= usrp_set_fpga_tx_enable (udh, 0);
ok &= usrp_set_fpga_rx_enable (udh, 0);
ok &= usrp_set_fpga_tx_reset (udh, 1); // reset tx and rx paths
ok &= usrp_set_fpga_rx_reset (udh, 1);
ok &= usrp_set_fpga_tx_reset (udh, 0); // reset tx and rx paths
ok &= usrp_set_fpga_rx_reset (udh, 0);
if (!ok)
fprintf (stderr, "usrp: failed to reset tx and/or rx path\n");
// Manually reset all regs except master control to zero.
// FIXME may want to remove this when we rework FPGA reset strategy.
// In the mean while, this gets us reproducible behavior.
for (int i = 0; i < FR_USER_0; i++){
if (i == FR_MASTER_CTRL)
continue;
usrp_write_fpga_reg(udh, i, 0);
}
power_down_9862s (udh); // on the rev1, power these down!
usrp_set_led (udh, 1, 0); // led 1 off
return true;
fail:
power_down_9862s (udh); // on the rev1, power these down!
fclose (fp);
return false;
}
// ----------------------------------------------------------------
bool
usrp_set_led (libusb_device_handle *udh, int which, bool on)
{
int r = write_cmd (udh, VRQ_SET_LED, on, which, 0, 0);
return r == 0;
}
bool
usrp_set_hash (libusb_device_handle *udh, int which,
const unsigned char hash[USRP_HASH_SIZE])
{
which &= 1;
// we use the Cypress firmware down load command to jam it in.
int r = _usb_control_transfer (udh, 0x40, 0xa0, hash_slot_addr[which], 0,
(unsigned char *) hash, USRP_HASH_SIZE, 1000);
return r == USRP_HASH_SIZE;
}
bool
usrp_get_hash (libusb_device_handle *udh, int which,
unsigned char hash[USRP_HASH_SIZE])
{
which &= 1;
// we use the Cypress firmware upload command to fetch it.
int r = _usb_control_transfer (udh, 0xc0, 0xa0, hash_slot_addr[which], 0,
(unsigned char *) hash, USRP_HASH_SIZE, 1000);
return r == USRP_HASH_SIZE;
}
static bool
usrp_set_switch (libusb_device_handle *udh, int cmd_byte, bool on)
{
return write_cmd (udh, cmd_byte, on, 0, 0, 0) == 0;
}
static bool
usrp1_fpga_write (libusb_device_handle *udh,
int regno, int value)
{
// on the rev1 usrp, we use the generic spi_write interface
unsigned char buf[4];
buf[0] = (value >> 24) & 0xff; // MSB first
buf[1] = (value >> 16) & 0xff;
buf[2] = (value >> 8) & 0xff;
buf[3] = (value >> 0) & 0xff;
return usrp_spi_write (udh, 0x00 | (regno & 0x7f),
SPI_ENABLE_FPGA,
SPI_FMT_MSB | SPI_FMT_HDR_1,
buf, sizeof (buf));
}
static bool
usrp1_fpga_read (libusb_device_handle *udh,
int regno, int *value)
{
*value = 0;
unsigned char buf[4];
bool ok = usrp_spi_read (udh, 0x80 | (regno & 0x7f),
SPI_ENABLE_FPGA,
SPI_FMT_MSB | SPI_FMT_HDR_1,
buf, sizeof (buf));
if (ok)
*value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
return ok;
}
bool
usrp_write_fpga_reg (libusb_device_handle *udh, int reg, int value)
{
switch (usrp_hw_rev (_get_usb_device (udh))){
case 0: // not supported ;)
abort();
default:
return usrp1_fpga_write (udh, reg, value);
}
}
bool
usrp_read_fpga_reg (libusb_device_handle *udh, int reg, int *value)
{
switch (usrp_hw_rev (_get_usb_device (udh))){
case 0: // not supported ;)
abort();
default:
return usrp1_fpga_read (udh, reg, value);
}
}
bool
usrp_set_fpga_reset (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_RESET, on);
}
bool
usrp_set_fpga_tx_enable (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_TX_ENABLE, on);
}
bool
usrp_set_fpga_rx_enable (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_RX_ENABLE, on);
}
bool
usrp_set_fpga_tx_reset (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_TX_RESET, on);
}
bool
usrp_set_fpga_rx_reset (libusb_device_handle *udh, bool on)
{
return usrp_set_switch (udh, VRQ_FPGA_SET_RX_RESET, on);
}
// ----------------------------------------------------------------
// conditional load stuff
static bool
compute_hash (const char *filename, unsigned char hash[USRP_HASH_SIZE])
{
assert (USRP_HASH_SIZE == 16);
memset (hash, 0, USRP_HASH_SIZE);
FILE *fp = fopen (filename, "rb");
if (fp == 0){
perror (filename);
return false;
}
int r = md5_stream (fp, hash);
fclose (fp);
return r == 0;
}
static usrp_load_status_t
usrp_conditionally_load_something (libusb_device_handle *udh,
const char *filename,
bool force,
int slot,
bool loader (libusb_device_handle *,
const char *,
unsigned char [USRP_HASH_SIZE]))
{
unsigned char file_hash[USRP_HASH_SIZE];
unsigned char usrp_hash[USRP_HASH_SIZE];
if (access (filename, R_OK) != 0){
perror (filename);
return ULS_ERROR;
}
if (!compute_hash (filename, file_hash))
return ULS_ERROR;
if (!force
&& usrp_get_hash (udh, slot, usrp_hash)
&& memcmp (file_hash, usrp_hash, USRP_HASH_SIZE) == 0)
return ULS_ALREADY_LOADED;
bool r = loader (udh, filename, file_hash);
if (!r)
return ULS_ERROR;
return ULS_OK;
}
usrp_load_status_t
usrp_load_firmware (libusb_device_handle *udh,
const char *filename,
bool force)
{
return usrp_conditionally_load_something (udh, filename, force,
FIRMWARE_HASH_SLOT,
_usrp_load_firmware);
}
usrp_load_status_t
usrp_load_fpga (libusb_device_handle *udh,
const char *filename,
bool force)
{
return usrp_conditionally_load_something (udh, filename, force,
FPGA_HASH_SLOT,
_usrp_load_fpga);
}
static libusb_device_handle *
open_nth_cmd_interface (int nth, libusb_context *ctx)
{
libusb_device *udev = usrp_find_device (nth, false, ctx);
if (udev == 0){
fprintf (stderr, "usrp: failed to find usrp[%d]\n", nth);
return 0;
}
libusb_device_handle *udh;
udh = usrp_open_cmd_interface (udev);
if (udh == 0){
// FIXME this could be because somebody else has it open.
// We should delay and retry...
fprintf (stderr, "open_nth_cmd_interface: open_cmd_interface failed\n");
return 0;
}
return udh;
}
static bool
our_nanosleep (const struct timespec *delay)
{
struct timespec new_delay = *delay;
struct timespec remainder;
while (1){
int r = nanosleep (&new_delay, &remainder);
if (r == 0)
return true;
if (errno == EINTR)
new_delay = remainder;
else {
perror ("nanosleep");
return false;
}
}
}
static bool
mdelay (int millisecs)
{
struct timespec ts;
ts.tv_sec = millisecs / 1000;
ts.tv_nsec = (millisecs - (1000 * ts.tv_sec)) * 1000000;
return our_nanosleep (&ts);
}
usrp_load_status_t
usrp_load_firmware_nth (int nth, const char *filename, bool force, libusb_context *ctx)
{
libusb_device_handle *udh = open_nth_cmd_interface (nth, ctx);
if (udh == 0)
return ULS_ERROR;
usrp_load_status_t s = usrp_load_firmware (udh, filename, force);
usrp_close_interface (udh);
switch (s){
case ULS_ALREADY_LOADED: // nothing changed...
return ULS_ALREADY_LOADED;
break;
case ULS_OK:
// we loaded firmware successfully.
// It's highly likely that the board will renumerate (simulate a
// disconnect/reconnect sequence), invalidating our current
// handle.
// FIXME. Turn this into a loop that rescans until we refind ourselves
struct timespec t; // delay for 1 second
t.tv_sec = 2;
t.tv_nsec = 0;
our_nanosleep (&t);
return ULS_OK;
default:
case ULS_ERROR: // some kind of problem
return ULS_ERROR;
}
}
static void
load_status_msg (usrp_load_status_t s, const char *type, const char *filename)
{
char *e = getenv("USRP_VERBOSE");
bool verbose = e != 0;
switch (s){
case ULS_ERROR:
fprintf (stderr, "usrp: failed to load %s %s.\n", type, filename);
break;
case ULS_ALREADY_LOADED:
if (verbose)
fprintf (stderr, "usrp: %s %s already loaded.\n", type, filename);
break;
case ULS_OK:
if (verbose)
fprintf (stderr, "usrp: %s %s loaded successfully.\n", type, filename);
break;
}
}
bool
usrp_load_standard_bits (int nth, bool force,
const std::string fpga_filename,
const std::string firmware_filename,
libusb_context *ctx)
{
usrp_load_status_t s;
const char *filename;
const char *proto_filename;
int hw_rev;
// first, figure out what hardware rev we're dealing with
{
libusb_device *udev = usrp_find_device (nth, false, ctx);
if (udev == 0){
fprintf (stderr, "usrp: failed to find usrp[%d]\n", nth);
return false;
}
hw_rev = usrp_hw_rev (udev);
}
// start by loading the firmware
proto_filename = get_proto_filename(firmware_filename, "USRP_FIRMWARE",
default_firmware_filename);
filename = find_file(proto_filename, hw_rev);
if (filename == 0){
fprintf (stderr, "Can't find firmware: %s\n", proto_filename);
return false;
}
s = usrp_load_firmware_nth (nth, filename, force, ctx);
load_status_msg (s, "firmware", filename);
if (s == ULS_ERROR)
return false;
// if we actually loaded firmware, we must reload fpga ...
if (s == ULS_OK)
force = true;
// now move on to the fpga configuration bitstream
proto_filename = get_proto_filename(fpga_filename, "USRP_FPGA",
default_fpga_filename);
filename = find_file (proto_filename, hw_rev);
if (filename == 0){
fprintf (stderr, "Can't find fpga bitstream: %s\n", proto_filename);
return false;
}
libusb_device_handle *udh = open_nth_cmd_interface (nth, ctx);
if (udh == 0)
return false;
s = usrp_load_fpga (udh, filename, force);
usrp_close_interface (udh);
load_status_msg (s, "fpga bitstream", filename);
if (s == ULS_ERROR)
return false;
return true;
}
bool
_usrp_get_status (libusb_device_handle *udh, int which, bool *trouble)
{
unsigned char status;
*trouble = true;
if (write_cmd (udh, VRQ_GET_STATUS, 0, which,
&status, sizeof (status)) != sizeof (status))
return false;
*trouble = status;
return true;
}
bool
usrp_check_rx_overrun (libusb_device_handle *udh, bool *overrun_p)
{
return _usrp_get_status (udh, GS_RX_OVERRUN, overrun_p);
}
bool
usrp_check_tx_underrun (libusb_device_handle *udh, bool *underrun_p)
{
return _usrp_get_status (udh, GS_TX_UNDERRUN, underrun_p);
}
bool
usrp_i2c_write (libusb_device_handle *udh, int i2c_addr,
const void *buf, int len)
{
if (len < 1 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_I2C_WRITE, i2c_addr, 0,
(unsigned char *) buf, len) == len;
}
bool
usrp_i2c_read (libusb_device_handle *udh, int i2c_addr,
void *buf, int len)
{
if (len < 1 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_I2C_READ, i2c_addr, 0,
(unsigned char *) buf, len) == len;
}
bool
usrp_spi_write (libusb_device_handle *udh,
int optional_header, int enables, int format,
const void *buf, int len)
{
if (len < 0 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_SPI_WRITE,
optional_header,
((enables & 0xff) << 8) | (format & 0xff),
(unsigned char *) buf, len) == len;
}
bool
usrp_spi_read (libusb_device_handle *udh,
int optional_header, int enables, int format,
void *buf, int len)
{
if (len < 0 || len > MAX_EP0_PKTSIZE)
return false;
return write_cmd (udh, VRQ_SPI_READ,
optional_header,
((enables & 0xff) << 8) | (format & 0xff),
(unsigned char *) buf, len) == len;
}
bool
usrp_9862_write (libusb_device_handle *udh, int which_codec,
int regno, int value)
{
if (0)
fprintf (stderr, "usrp_9862_write which = %d, reg = %2d, val = %3d (0x%02x)\n",
which_codec, regno, value, value);
unsigned char buf[1];
buf[0] = value;
return usrp_spi_write (udh, 0x00 | (regno & 0x3f),
which_codec == 0 ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B,
SPI_FMT_MSB | SPI_FMT_HDR_1,
buf, 1);
}
bool
usrp_9862_read (libusb_device_handle *udh, int which_codec,
int regno, unsigned char *value)
{
return usrp_spi_read (udh, 0x80 | (regno & 0x3f),
which_codec == 0 ? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B,
SPI_FMT_MSB | SPI_FMT_HDR_1,
value, 1);
}
bool
usrp_9862_write_many (libusb_device_handle *udh,
int which_codec,
const unsigned char *buf,
int len)
{
if (len & 0x1)
return false; // must be even
bool result = true;
while (len > 0){
result &= usrp_9862_write (udh, which_codec, buf[0], buf[1]);
len -= 2;
buf += 2;
}
return result;
}
bool
usrp_9862_write_many_all (libusb_device_handle *udh,
const unsigned char *buf, int len)
{
// FIXME handle 2/2 and 4/4 versions
bool result;
result = usrp_9862_write_many (udh, 0, buf, len);
result &= usrp_9862_write_many (udh, 1, buf, len);
return result;
}
static void
power_down_9862s (libusb_device_handle *udh)
{
static const unsigned char regs[] = {
REG_RX_PWR_DN, 0x01, // everything
REG_TX_PWR_DN, 0x0f, // pwr dn digital and analog_both
REG_TX_MODULATOR, 0x00 // coarse & fine modulators disabled
};
switch (usrp_hw_rev (_get_usb_device (udh))){
case 0:
break;
default:
usrp_9862_write_many_all (udh, regs, sizeof (regs));
break;
}
}
static const int EEPROM_PAGESIZE = 16;
bool
usrp_eeprom_write (libusb_device_handle *udh, int i2c_addr,
int eeprom_offset, const void *buf, int len)
{
unsigned char cmd[2];
const unsigned char *p = (unsigned char *) buf;
// The simplest thing that could possibly work:
// all writes are single byte writes.
//
// We could speed this up using the page write feature,
// but we write so infrequently, why bother...
while (len-- > 0){
cmd[0] = eeprom_offset++;
cmd[1] = *p++;
bool r = usrp_i2c_write (udh, i2c_addr, cmd, sizeof (cmd));
mdelay (10); // delay 10ms worst case write time
if (!r)
return false;
}
return true;
}
bool
usrp_eeprom_read (libusb_device_handle *udh, int i2c_addr,
int eeprom_offset, void *buf, int len)
{
unsigned char *p = (unsigned char *) buf;
// We setup a random read by first doing a "zero byte write".
// Writes carry an address. Reads use an implicit address.
unsigned char cmd[1];
cmd[0] = eeprom_offset;
if (!usrp_i2c_write (udh, i2c_addr, cmd, sizeof (cmd)))
return false;
while (len > 0){
int n = std::min (len, MAX_EP0_PKTSIZE);
if (!usrp_i2c_read (udh, i2c_addr, p, n))
return false;
len -= n;
p += n;
}
return true;
}
// ----------------------------------------------------------------
static bool
slot_to_codec (int slot, int *which_codec)
{
*which_codec = 0;
switch (slot){
case SLOT_TX_A:
case SLOT_RX_A:
*which_codec = 0;
break;
case SLOT_TX_B:
case SLOT_RX_B:
*which_codec = 1;
break;
default:
fprintf (stderr, "usrp_prims:slot_to_codec: invalid slot = %d\n", slot);
return false;
}
return true;
}
static bool
tx_slot_p (int slot)
{
switch (slot){
case SLOT_TX_A:
case SLOT_TX_B:
return true;
default:
return false;
}
}
bool
usrp_write_aux_dac (libusb_device_handle *udh, int slot,
int which_dac, int value)
{
int which_codec;
if (!slot_to_codec (slot, &which_codec))
return false;
if (!(0 <= which_dac && which_dac < 4)){
fprintf (stderr, "usrp_write_aux_dac: invalid dac = %d\n", which_dac);
return false;
}
value &= 0x0fff; // mask to 12-bits
if (which_dac == 3){
// dac 3 is really 12-bits. Use value as is.
bool r = true;
r &= usrp_9862_write (udh, which_codec, 43, (value >> 4)); // most sig
r &= usrp_9862_write (udh, which_codec, 42, (value & 0xf) << 4); // least sig
return r;
}
else {
// dac 0, 1, and 2 are really 8 bits.
value = value >> 4; // shift value appropriately
return usrp_9862_write (udh, which_codec, 36 + which_dac, value);
}
}
bool
usrp_read_aux_adc (libusb_device_handle *udh, int slot,
int which_adc, int *value)
{
*value = 0;
int which_codec;
if (!slot_to_codec (slot, &which_codec))
return false;
if (!(0 <= which_codec && which_codec < 2)){
fprintf (stderr, "usrp_read_aux_adc: invalid adc = %d\n", which_adc);
return false;
}
unsigned char aux_adc_control =
AUX_ADC_CTRL_REFSEL_A // on chip reference
| AUX_ADC_CTRL_REFSEL_B; // on chip reference
int rd_reg = 26; // base address of two regs to read for result
// program the ADC mux bits
if (tx_slot_p (slot))
aux_adc_control |= AUX_ADC_CTRL_SELECT_A2 | AUX_ADC_CTRL_SELECT_B2;
else {
rd_reg += 2;
aux_adc_control |= AUX_ADC_CTRL_SELECT_A1 | AUX_ADC_CTRL_SELECT_B1;
}
// I'm not sure if we can set the mux and issue a start conversion
// in the same cycle, so let's do them one at a time.
usrp_9862_write (udh, which_codec, 34, aux_adc_control);
if (which_adc == 0)
aux_adc_control |= AUX_ADC_CTRL_START_A;
else {
rd_reg += 4;
aux_adc_control |= AUX_ADC_CTRL_START_B;
}
// start the conversion
usrp_9862_write (udh, which_codec, 34, aux_adc_control);
// read the 10-bit result back
unsigned char v_lo = 0;
unsigned char v_hi = 0;
bool r = usrp_9862_read (udh, which_codec, rd_reg, &v_lo);
r &= usrp_9862_read (udh, which_codec, rd_reg + 1, &v_hi);
if (r)
*value = ((v_hi << 2) | ((v_lo >> 6) & 0x3)) << 2; // format as 12-bit
return r;
}
// ----------------------------------------------------------------
static int slot_to_i2c_addr (int slot)
{
switch (slot){
case SLOT_TX_A: return I2C_ADDR_TX_A;
case SLOT_RX_A: return I2C_ADDR_RX_A;
case SLOT_TX_B: return I2C_ADDR_TX_B;
case SLOT_RX_B: return I2C_ADDR_RX_B;
default: return -1;
}
}
static void
set_chksum (unsigned char *buf)
{
int sum = 0;
unsigned int i;
for (i = 0; i < DB_EEPROM_CLEN - 1; i++)
sum += buf[i];
buf[i] = -sum;
}
static usrp_dbeeprom_status_t
read_dboard_eeprom (libusb_device_handle *udh,
int slot_id, unsigned char *buf)
{
int i2c_addr = slot_to_i2c_addr (slot_id);
if (i2c_addr == -1)
return UDBE_BAD_SLOT;
if (!usrp_eeprom_read (udh, i2c_addr, 0, buf, DB_EEPROM_CLEN))
return UDBE_NO_EEPROM;
if (buf[DB_EEPROM_MAGIC] != DB_EEPROM_MAGIC_VALUE)
return UDBE_INVALID_EEPROM;
int sum = 0;
for (unsigned int i = 0; i < DB_EEPROM_CLEN; i++)
sum += buf[i];
if ((sum & 0xff) != 0)
return UDBE_INVALID_EEPROM;
return UDBE_OK;
}
usrp_dbeeprom_status_t
usrp_read_dboard_eeprom (libusb_device_handle *udh,
int slot_id, usrp_dboard_eeprom *eeprom)
{
unsigned char buf[DB_EEPROM_CLEN];
memset (eeprom, 0, sizeof (*eeprom));
usrp_dbeeprom_status_t s = read_dboard_eeprom (udh, slot_id, buf);
if (s != UDBE_OK)
return s;
eeprom->id = (buf[DB_EEPROM_ID_MSB] << 8) | buf[DB_EEPROM_ID_LSB];
eeprom->oe = (buf[DB_EEPROM_OE_MSB] << 8) | buf[DB_EEPROM_OE_LSB];
eeprom->offset[0] = (buf[DB_EEPROM_OFFSET_0_MSB] << 8) | buf[DB_EEPROM_OFFSET_0_LSB];
eeprom->offset[1] = (buf[DB_EEPROM_OFFSET_1_MSB] << 8) | buf[DB_EEPROM_OFFSET_1_LSB];
return UDBE_OK;
}
bool
usrp_write_dboard_offsets (libusb_device_handle *udh, int slot_id,
short offset0, short offset1)
{
unsigned char buf[DB_EEPROM_CLEN];
usrp_dbeeprom_status_t s = read_dboard_eeprom (udh, slot_id, buf);
if (s != UDBE_OK)
return false;
buf[DB_EEPROM_OFFSET_0_LSB] = (offset0 >> 0) & 0xff;
buf[DB_EEPROM_OFFSET_0_MSB] = (offset0 >> 8) & 0xff;
buf[DB_EEPROM_OFFSET_1_LSB] = (offset1 >> 0) & 0xff;
buf[DB_EEPROM_OFFSET_1_MSB] = (offset1 >> 8) & 0xff;
set_chksum (buf);
return usrp_eeprom_write (udh, slot_to_i2c_addr (slot_id),
0, buf, sizeof (buf));
}
// ----------------------------------------------------------------
std::string
usrp_serial_number(libusb_device_handle *udh)
{
libusb_device_descriptor desc =
_get_usb_device_descriptor (_get_usb_device (udh));
unsigned char iserial = desc.iSerialNumber;
if (iserial == 0)
return "";
unsigned char buf[1024];
if (_get_usb_string_descriptor (udh, iserial, buf, sizeof(buf)) < 0)
return "";
return (char*) buf;
}
|