1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
|
//
// Copyright 2008 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#include <db_xcvr2450.h>
#include <db_base_impl.h>
#include <cmath>
/* ------------------------------------------------------------------------
* A few comments about the XCVR2450:
*
* It is half-duplex. I.e., transmit and receive are mutually exclusive.
* There is a single LO for both the Tx and Rx sides.
* For our purposes the board is always either receiving or transmitting.
*
* Each board is uniquely identified by the *USRP hardware* instance and side
* This dictionary holds a weak reference to existing board controller so it
* can be created or retrieved as needed.
*/
/*****************************************************************************/
xcvr2450::xcvr2450(usrp_basic_sptr _usrp, int which)
: d_weak_usrp(_usrp), d_which(which)
{
// Handler for Tv Rx daughterboards.
//
// @param usrp: instance of usrp.source_c
// @param which: which side: 0, 1 corresponding to RX_A or RX_B respectively
// Use MSB with no header
d_spi_format = SPI_FMT_MSB | SPI_FMT_HDR_0;
if(which == 0) {
d_spi_enable = SPI_ENABLE_RX_A;
}
else {
d_spi_enable = SPI_ENABLE_RX_B;
}
// Sane defaults
d_mimo = 1; // 0 = OFF, 1 = ON
d_int_div = 192; // 128 = min, 255 = max
d_frac_div = 0; // 0 = min, 65535 = max
d_highband = 0; // 0 = freq <= 5.4e9, 1 = freq > 5.4e9
d_five_gig = 0; // 0 = freq <= 3.e9, 1 = freq > 3e9
d_cp_current = 0; // 0 = 2mA, 1 = 4mA
d_ref_div = 4; // 1 to 7
d_rssi_hbw = 0; // 0 = 2 MHz, 1 = 6 MHz
d_txlpf_bw = 1; // 1 = 12 MHz, 2 = 18 MHz, 3 = 24 MHz
d_rxlpf_bw = 1; // 0 = 7.5 MHz, 1 = 9.5 MHz, 2 = 14 MHz, 3 = 18 MHz
d_rxlpf_fine = 2; // 0 = 90%, 1 = 95%, 2 = 100%, 3 = 105%, 4 = 110%
d_rxvga_ser = 1; // 0 = RXVGA controlled by B7:1, 1=controlled serially
d_rssi_range = 1; // 0 = low range (datasheet typo), 1=high range (0.5V - 2.0V)
d_rssi_mode = 1; // 0 = enable follows RXHP, 1 = enabled
d_rssi_mux = 0; // 0 = RSSI, 1 = TEMP
d_rx_hp_pin = 0; // 0 = Fc set by rx_hpf, 1 = 600 KHz
d_rx_hpf = 0; // 0 = 100Hz, 1 = 30KHz
d_rx_ant = 0; // 0 = Ant. #1, 1 = Ant. #2
d_tx_ant = 0; // 0 = Ant. #1, 1 = Ant. #2
d_txvga_ser = 1; // 0 = TXVGA controlled by B6:1, 1=controlled serially
d_tx_driver_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin)
d_tx_vga_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin)
d_tx_upconv_lin = 2; // 0=50% (worst linearity), 1=63%, 2=78%, 3=100% (best lin)
d_tx_bb_gain = 3; // 0=maxgain-5dB, 1=max-3dB, 2=max-1.5dB, 3=max
d_pabias_delay = 15; // 0 = 0, 15 = 7uS
d_pabias = 0; // 0 = 0 uA, 63 = 315uA
d_rx_rf_gain = 0; // 0 = 0dB, 1 = 0dB, 2 = 15dB, 3 = 30dB
d_rx_bb_gain = 16; // 0 = min, 31 = max (0 - 62 dB)
d_txgain = 63; // 0 = min, 63 = max
// Initialize GPIO and ATR
tx_write_io(TX_SAFE_IO, TX_OE_MASK);
tx_write_oe(TX_OE_MASK, ~0);
tx_set_atr_txval(TX_SAFE_IO);
tx_set_atr_rxval(TX_SAFE_IO);
tx_set_atr_mask(TX_OE_MASK);
rx_write_io(RX_SAFE_IO, RX_OE_MASK);
rx_write_oe(RX_OE_MASK, ~0);
rx_set_atr_rxval(RX_SAFE_IO);
rx_set_atr_txval(RX_SAFE_IO);
rx_set_atr_mask(RX_OE_MASK);
// Initialize chipset
// TODO: perform reset sequence to ensure power up defaults
set_reg_standby();
set_reg_bandselpll();
set_reg_cal();
set_reg_lpf();
set_reg_rxrssi_ctrl();
set_reg_txlin_gain();
set_reg_pabias();
set_reg_rxgain();
set_reg_txgain();
//FIXME: set_freq(2.45e9);
}
xcvr2450::~xcvr2450()
{
//printf("xcvr2450::destructor\n");
tx_set_atr_txval(TX_SAFE_IO);
tx_set_atr_rxval(TX_SAFE_IO);
rx_set_atr_rxval(RX_SAFE_IO);
rx_set_atr_txval(RX_SAFE_IO);
}
bool
xcvr2450::operator==(xcvr2450_key x)
{
if((x.serial_no == usrp()->serial_number()) && (x.which == d_which)) {
return true;
}
else {
return false;
}
}
void
xcvr2450::set_reg_standby()
{
d_reg_standby = ((d_mimo<<17) |
(1<<16) |
(1<<6) |
(1<<5) |
(1<<4) | 2);
send_reg(d_reg_standby);
}
void
xcvr2450::set_reg_int_divider()
{
d_reg_int_divider = (((d_frac_div & 0x03)<<16) |
(d_int_div<<4) | 3);
send_reg(d_reg_int_divider);
}
void
xcvr2450::set_reg_frac_divider()
{
d_reg_frac_divider = ((d_frac_div & 0xfffc)<<2) | 4;
send_reg(d_reg_frac_divider);
}
void
xcvr2450::set_reg_bandselpll()
{
d_reg_bandselpll = ((d_mimo<<17) |
(1<<16) |
(1<<15) |
(1<<11) |
(d_highband<<10) |
(d_cp_current<<9) |
(d_ref_div<<5) |
(d_five_gig<<4) | 5);
send_reg(d_reg_bandselpll);
}
void
xcvr2450::set_reg_cal()
{
// FIXME do calibration
d_reg_cal = (1<<14)|6;
send_reg(d_reg_cal);
}
void
xcvr2450::set_reg_lpf()
{
d_reg_lpf = (
(d_rssi_hbw<<15) |
(d_txlpf_bw<<10) |
(d_rxlpf_bw<<9) |
(d_rxlpf_fine<<4) | 7);
send_reg(d_reg_lpf);
}
void
xcvr2450::set_reg_rxrssi_ctrl()
{
d_reg_rxrssi_ctrl = ((d_rxvga_ser<<16) |
(d_rssi_range<<15) |
(d_rssi_mode<<14) |
(d_rssi_mux<<12) |
(1<<9) |
(d_rx_hpf<<6) |
(1<<4) | 8);
send_reg(d_reg_rxrssi_ctrl);
}
void
xcvr2450::set_reg_txlin_gain()
{
d_reg_txlin_gain = ((d_txvga_ser<<14) |
(d_tx_driver_lin<<12) |
(d_tx_vga_lin<<10) |
(d_tx_upconv_lin<<6) |
(d_tx_bb_gain<<4) | 9);
send_reg(d_reg_txlin_gain);
}
void
xcvr2450::set_reg_pabias()
{
d_reg_pabias = (
(d_pabias_delay<<10) |
(d_pabias<<4) | 10);
send_reg(d_reg_pabias);
}
void
xcvr2450::set_reg_rxgain()
{
d_reg_rxgain = (
(d_rx_rf_gain<<9) |
(d_rx_bb_gain<<4) | 11);
send_reg(d_reg_rxgain);
}
void
xcvr2450::set_reg_txgain()
{
d_reg_txgain = (d_txgain<<4) | 12;
send_reg(d_reg_txgain);
}
void
xcvr2450::send_reg(int v)
{
// Send 24 bits, it keeps last 18 clocked in
char c[3];
c[0] = (char)((v >> 16) & 0xff);
c[1] = (char)((v >> 8) & 0xff);
c[2] = (char)((v & 0xff));
std::string s(c, 3);
usrp()->_write_spi(0, d_spi_enable, d_spi_format, s);
//printf("xcvr2450: Setting reg %d to %06X\n", (v&15), v);
}
// --------------------------------------------------------------------
// These methods control the GPIO bus. Since the board has to access
// both the io_rx_* and io_tx_* pins, we define our own methods to do so.
// This bypasses any code in db_base.
//
// The board operates in ATR mode, always. Thus, when the board is first
// initialized, it is in receive mode, until bits show up in the TX FIFO.
//
// FIXME these should just call the similarly named common_* method on usrp_basic
bool
xcvr2450::tx_write_oe(int value, int mask)
{
int reg;
if(d_which)
reg = FR_OE_2;
else
reg = FR_OE_0;
return usrp()->_write_fpga_reg(reg, (mask << 16) | value);
}
bool
xcvr2450::tx_write_io(int value, int mask)
{
int reg;
if(d_which)
reg = FR_IO_2;
else
reg = FR_IO_0;
return usrp()->_write_fpga_reg(reg, (mask << 16) | value);
}
int
xcvr2450::tx_read_io()
{
int val;
if(d_which)
val = FR_RB_IO_RX_B_IO_TX_B;
else
val = FR_RB_IO_RX_A_IO_TX_A;
int t = usrp()->_read_fpga_reg(val);
return t & 0xffff;
}
bool
xcvr2450::rx_write_oe(int value, int mask)
{
int reg;
if(d_which)
reg = FR_OE_3;
else
reg = FR_OE_1;
return usrp()->_write_fpga_reg(reg, (mask << 16) | value);
}
bool
xcvr2450::rx_write_io(int value, int mask)
{
int reg;
if(d_which)
reg = FR_IO_3;
else
reg = FR_IO_1;
return usrp()->_write_fpga_reg(reg, (mask << 16) | value);
}
int
xcvr2450::rx_read_io()
{
int val;
if(d_which)
val = FR_RB_IO_RX_B_IO_TX_B;
else
val = FR_RB_IO_RX_A_IO_TX_A;
int t = usrp()->_read_fpga_reg(val);
return (t >> 16) & 0xffff;
}
bool
xcvr2450::tx_set_atr_mask(int v)
{
int reg;
if(d_which)
reg = FR_ATR_MASK_2;
else
reg = FR_ATR_MASK_0;
return usrp()->_write_fpga_reg(reg, v);
}
bool
xcvr2450::tx_set_atr_txval(int v)
{
int reg;
if(d_which)
reg = FR_ATR_TXVAL_2;
else
reg = FR_ATR_TXVAL_0;
return usrp()->_write_fpga_reg(reg, v);
}
bool
xcvr2450::tx_set_atr_rxval(int v)
{
int reg;
if(d_which)
reg = FR_ATR_RXVAL_2;
else
reg = FR_ATR_RXVAL_0;
return usrp()->_write_fpga_reg(reg, v);
}
bool
xcvr2450::rx_set_atr_mask(int v)
{
int reg;
if(d_which)
reg = FR_ATR_MASK_3;
else
reg = FR_ATR_MASK_1;
return usrp()->_write_fpga_reg(reg, v);
}
bool
xcvr2450::rx_set_atr_txval(int v)
{
int reg;
if(d_which)
reg = FR_ATR_TXVAL_3;
else
reg = FR_ATR_TXVAL_1;
return usrp()->_write_fpga_reg(reg, v);
}
bool
xcvr2450::rx_set_atr_rxval(int v)
{
int reg;
if(d_which)
reg = FR_ATR_RXVAL_3;
else
reg = FR_ATR_RXVAL_1;
return usrp()->_write_fpga_reg(reg, v);
}
// ----------------------------------------------------------------
void
xcvr2450::set_gpio()
{
// We calculate four values:
//
// io_rx_while_rx: what to drive onto io_rx_* when receiving
// io_rx_while_tx: what to drive onto io_rx_* when transmitting
// io_tx_while_rx: what to drive onto io_tx_* when receiving
// io_tx_while_tx: what to drive onto io_tx_* when transmitting
//
// B1-B7 is ignored as gain is set serially for now.
int rx_hp, tx_antsel, rx_antsel, tx_pa_sel;
if(d_rx_hp_pin)
rx_hp = RX_HP;
else
rx_hp = 0;
if(d_tx_ant)
tx_antsel = ANTSEL_TX2_RX1;
else
tx_antsel = ANTSEL_TX1_RX2;
if(d_rx_ant)
rx_antsel = ANTSEL_TX2_RX1;
else
rx_antsel = ANTSEL_TX1_RX2;
if(d_five_gig)
tx_pa_sel = LB_PA_OFF;
else
tx_pa_sel = HB_PA_OFF;
int io_rx_while_rx = EN|rx_hp|RX_EN;
int io_rx_while_tx = EN|rx_hp;
int io_tx_while_rx = HB_PA_OFF|LB_PA_OFF|rx_antsel|AD9515DIV;
int io_tx_while_tx = tx_pa_sel|tx_antsel|TX_EN|AD9515DIV;
rx_set_atr_rxval(io_rx_while_rx);
rx_set_atr_txval(io_rx_while_tx);
tx_set_atr_rxval(io_tx_while_rx);
tx_set_atr_txval(io_tx_while_tx);
//printf("GPIO: RXRX=%04X RXTX=%04X TXRX=%04X TXTX=%04X\n",
// io_rx_while_rx, io_rx_while_tx, io_tx_while_rx, io_tx_while_tx);
}
struct freq_result_t
xcvr2450::set_freq(double target_freq)
{
struct freq_result_t args = {false, 0};
double scaler;
if(target_freq > 3e9) {
d_five_gig = 1;
d_ref_div = 1;
d_ad9515_div = 3;
scaler = 4.0/5.0;
}
else {
d_five_gig = 0;
d_ref_div = 1;
d_ad9515_div = 3;
scaler = 4.0/3.0;
}
if(target_freq > 5.27e9) {
d_highband = 1;
}
else {
d_highband = 0;
}
double vco_freq = target_freq*scaler;
double sys_clk = usrp()->fpga_master_clock_freq(); // Usually 64e6
double ref_clk = sys_clk / d_ad9515_div;
double phdet_freq = ref_clk/d_ref_div;
double div = vco_freq/phdet_freq;
d_int_div = int(floor(div));
d_frac_div = int((div-d_int_div)*65536.0);
double actual_freq = phdet_freq*(d_int_div+(d_frac_div/65536.0))/scaler;
//printf("RF=%f VCO=%f R=%d PHD=%f DIV=%3.5f I=%3d F=%5d ACT=%f\n",
// target_freq, vco_freq, d_ref_div, phdet_freq,
// div, d_int_div, d_frac_div, actual_freq);
set_gpio();
set_reg_int_divider();
set_reg_frac_divider();
set_reg_bandselpll();
args.ok = lock_detect();
args.baseband_freq = actual_freq;
if(args.ok) {
if((target_freq > 5.275e9) && (target_freq <= 5.35e9)) {
d_highband = 0;
set_reg_bandselpll();
args.ok = lock_detect();
//printf("swap to 0 at %f, ok %d\n", target_freq, args.ok);
}
if((target_freq >= 5.25e9) && (target_freq <= 5.275e9)) {
d_highband = 1;
set_reg_bandselpll();
args.ok = lock_detect();
//printf("swap to 1 at %f, ok %d\n", target_freq, args.ok);
}
if(!args.ok){
//printf("Fail %f\n", target_freq);
}
}
return args;
}
bool
xcvr2450::lock_detect()
{
/*
@returns: the value of the VCO/PLL lock detect bit.
@rtype: 0 or 1
*/
if(rx_read_io() & LOCKDET) {
return true;
}
else { // Give it a second chance
if(rx_read_io() & LOCKDET)
return true;
else
return false;
}
}
bool
xcvr2450::set_rx_gain(float gain)
{
if(gain < 0.0)
gain = 0.0;
if(gain > 92.0)
gain = 92.0;
// Split the gain between RF and baseband
// This is experimental, not prescribed
if(gain < 31.0) {
d_rx_rf_gain = 0; // 0 dB RF gain
rx_bb_gain = int(gain/2.0);
}
if(gain >= 30.0 and gain < 60.5) {
d_rx_rf_gain = 2; // 15 dB RF gain
d_rx_bb_gain = int((gain-15.0)/2.0);
}
if(gain >= 60.5) {
d_rx_rf_gain = 3; // 30.5 dB RF gain
d_rx_bb_gain = int((gain-30.5)/2.0);
}
set_reg_rxgain();
return true;
}
bool
xcvr2450::set_tx_gain(float gain)
{
if(gain < 0.0) {
gain = 0.0;
}
if(gain > 30.0) {
gain = 30.0;
}
d_txgain = int((gain/30.0)*63);
set_reg_txgain();
return true;
}
/*****************************************************************************/
//_xcvr2450_inst = weakref.WeakValueDictionary()
std::vector<xcvr2450_sptr> _xcvr2450_inst;
xcvr2450_sptr
_get_or_make_xcvr2450(usrp_basic_sptr usrp, int which)
{
xcvr2450_sptr inst;
xcvr2450_key key = {usrp->serial_number(), which};
std::vector<xcvr2450_sptr>::iterator itr; // =
//std::find(_xcvr2450_inst.begin(), _xcvr2450_inst.end(), key);
for(itr = _xcvr2450_inst.begin(); itr != _xcvr2450_inst.end(); itr++) {
if(*(*itr) == key) {
//printf("Using existing xcvr2450 instance\n");
inst = *itr;
break;
}
}
if(itr == _xcvr2450_inst.end()) {
//printf("Creating new xcvr2450 instance\n");
inst = xcvr2450_sptr(new xcvr2450(usrp, which));
_xcvr2450_inst.push_back(inst);
}
return inst;
}
/*****************************************************************************/
db_xcvr2450_base::db_xcvr2450_base(usrp_basic_sptr usrp, int which)
: db_base(usrp, which)
{
/*
* Abstract base class for all xcvr2450 boards.
*
* Derive board specific subclasses from db_xcvr2450_base_{tx,rx}
*
* @param usrp: instance of usrp.source_c
* @param which: which side: 0 or 1 corresponding to side A or B respectively
* @type which: int
*/
d_xcvr = _get_or_make_xcvr2450(usrp, which);
}
db_xcvr2450_base::~db_xcvr2450_base()
{
}
struct freq_result_t
db_xcvr2450_base::set_freq(double target_freq)
{
/*
* @returns (ok, actual_baseband_freq) where:
* ok is True or False and indicates success or failure,
* actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
*/
return d_xcvr->set_freq(target_freq+d_lo_offset);
}
bool
db_xcvr2450_base::is_quadrature()
{
/*
* Return True if this board requires both I & Q analog channels.
*
* This bit of info is useful when setting up the USRP Rx mux register.
*/
return true;
}
double
db_xcvr2450_base::freq_min()
{
return 2.4e9;
}
double
db_xcvr2450_base::freq_max()
{
return 6.0e9;
}
/******************************************************************************/
db_xcvr2450_tx::db_xcvr2450_tx(usrp_basic_sptr usrp, int which)
: db_xcvr2450_base(usrp, which)
{
set_lo_offset(4.25e6);
//printf("db_xcvr2450_tx::db_xcvr2450_tx\n");
}
db_xcvr2450_tx::~db_xcvr2450_tx()
{
}
float
db_xcvr2450_tx::gain_min()
{
return 0;
}
float
db_xcvr2450_tx::gain_max()
{
return 30;
}
float
db_xcvr2450_tx::gain_db_per_step()
{
return (30.0/63.0);
}
bool
db_xcvr2450_tx::set_gain(float gain)
{
return d_xcvr->set_tx_gain(gain);
}
bool
db_xcvr2450_tx::i_and_q_swapped()
{
return true;
}
/******************************************************************************/
db_xcvr2450_rx::db_xcvr2450_rx(usrp_basic_sptr usrp, int which)
: db_xcvr2450_base(usrp, which)
{
/*
* @param usrp: instance of usrp.source_c
* @param which: 0 or 1 corresponding to side RX_A or RX_B respectively.
*/
set_lo_offset(4.25e6);
//printf("db_xcvr2450_rx:d_xcvr_2450_rx\n");
}
db_xcvr2450_rx::~db_xcvr2450_rx()
{
}
float
db_xcvr2450_rx::gain_min()
{
return 0.0;
}
float
db_xcvr2450_rx::gain_max()
{
return 92.0;
}
float
db_xcvr2450_rx::gain_db_per_step()
{
return 1;
}
bool
db_xcvr2450_rx::set_gain(float gain)
{
return d_xcvr->set_rx_gain(gain);
}
|