1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
//
// Copyright 2008 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#include <db_tv_rx.h>
#include <db_base_impl.h>
/*****************************************************************************/
int
control_byte_1(bool fast_tuning_p, int reference_divisor)
{
int c = 0x88;
if(fast_tuning_p) {
c |= 0x40;
}
if(reference_divisor == 512) {
c |= 0x3 << 1;
}
else if(reference_divisor == 640) {
c |= 0x0 << 1;
}
else if(reference_divisor == 1024) {
c |= 0x1 << 1;
}
else {
assert(0);
}
return c;
}
int
control_byte_2(double target_freq, bool shutdown_tx_PGA)
{
int c;
if(target_freq < 158e6) { // VHF low
c = 0xa0;
}
else if(target_freq < 464e6) { // VHF high
c = 0x90;
}
else { // UHF
c = 0x30;
}
if(shutdown_tx_PGA) {
c |= 0x08;
}
return c;
}
/*****************************************************************************/
db_tv_rx::db_tv_rx(usrp_basic_sptr usrp, int which,
double first_IF, double second_IF)
: db_base(usrp, which)
{
// Handler for Tv Rx daughterboards.
//
// @param usrp: instance of usrp.source_c
// @param which: which side: 0, 1 corresponding to RX_A or RX_B respectively
if(which == 0) {
d_i2c_addr = 0x60;
}
else {
d_i2c_addr = 0x61;
}
d_first_IF = first_IF;
d_second_IF = second_IF;
d_reference_divisor = 640;
d_fast_tuning = false;
d_inverted = false; // FIXME get rid of this
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
bypass_adc_buffers(false);
}
db_tv_rx::~db_tv_rx()
{
}
// Gain setting
void
db_tv_rx::_set_rfagc(float gain)
{
float voltage;
assert(gain <= 60 && gain >= 0);
// FIXME this has a 0.5V step between gain = 60 and gain = 59.
// Why are there two cases instead of a single linear case?
if(gain == 60) {
voltage = 4;
}
else {
voltage = gain/60.0 * 2.25 + 1.25;
}
int dacword = int(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 1, dacword);
}
void
db_tv_rx::_set_ifagc(float gain)
{
float voltage;
assert(gain <= 35 && gain >= 0);
voltage = gain/35.0 * 2.1 + 1.4;
int dacword = int(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 0, dacword);
}
void
db_tv_rx::_set_pga(float pga_gain)
{
assert(pga_gain >=0 && pga_gain <=20);
if(d_which == 0) {
usrp()->set_pga(0, pga_gain);
}
else {
usrp()->set_pga (2, pga_gain);
}
}
double
db_tv_rx::freq_min()
{
return 50e6;
}
double
db_tv_rx::freq_max()
{
return 860e6;
}
struct freq_result_t
db_tv_rx::set_freq(double target_freq)
{
// Set the frequency.
//
// @param freq: target RF frequency in Hz
// @type freq: double
//
// @returns (ok, actual_baseband_freq) where:
// ok is True or False and indicates success or failure,
// actual_baseband_freq is RF frequency that corresponds to DC in the IF.
freq_result_t args = {false, 0};
double fmin = freq_min();
double fmax = freq_max();
if((target_freq < fmin) || (target_freq > fmax)) {
return args;
}
double target_lo_freq = target_freq + d_first_IF; // High side mixing
double f_ref = 4.0e6 / (double)(d_reference_divisor); // frequency steps
int divisor = int((target_lo_freq + (f_ref * 4)) / (f_ref * 8));
double actual_lo_freq = (f_ref * 8 * divisor);
double actual_freq = actual_lo_freq - d_first_IF;
if((divisor & ~0x7fff) != 0) { // must be 15-bits or less
return args;
}
// build i2c command string
std::vector<int> buf(4);
buf[0] = (divisor >> 8) & 0xff; // DB1
buf[1] = divisor & 0xff; // DB2
buf[2] = control_byte_1(d_fast_tuning, d_reference_divisor);
buf[3] = control_byte_2(actual_freq, true);
args.ok = usrp()->write_i2c(d_i2c_addr, int_seq_to_str (buf));
args.baseband_freq = actual_freq - d_second_IF;
return args;
}
float
db_tv_rx::gain_min()
{
return 0;
}
float
db_tv_rx::gain_max()
{
return 115;
}
float
db_tv_rx::gain_db_per_step()
{
return 1;
}
bool
db_tv_rx::set_gain(float gain)
{
// Set the gain.
//
// @param gain: gain in decibels
// @returns True/False
float rfgain, ifgain, pgagain;
assert(gain>=0 && gain<=115);
if(gain>60) {
rfgain = 60;
gain = gain - 60;
}
else {
rfgain = gain;
gain = 0;
}
if(gain > 35) {
ifgain = 35;
gain = gain - 35;
}
else {
ifgain = gain;
gain = 0;
}
pgagain = gain;
_set_rfagc(rfgain);
_set_ifagc(ifgain);
_set_pga(pgagain);
return true;
}
bool
db_tv_rx::is_quadrature()
{
// Return True if this board requires both I & Q analog channels.
return false;
}
bool
db_tv_rx::spectrum_inverted()
{
// The 43.75 MHz version is inverted
return d_inverted;
}
|