1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/* -*- c++ -*- */
//
// Copyright 2008 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#include <db_dtt768.h>
#include <db_base_impl.h>
int
control_byte_4()
{
int C = 0; // Charge Pump Current, no info on how to choose
int R = 4; // 125 kHz fref
// int ATP = 7; // Disable internal AGC
return (0x80 | C<<5 | R);
}
int
control_byte_5(float freq, int agcmode = 1)
{
if(agcmode) {
if(freq < 150e6) {
return 0x3B;
}
else if(freq < 420e6) {
return 0x7E;
}
else {
return 0xB7;
}
}
else {
if(freq < 150e6) {
return 0x39;
}
else if(freq < 420e6) {
return 0x7C;
}
else {
return 0xB5;
}
}
}
int
control_byte_6()
{
int ATC = 0; // AGC time constant = 100ms, 1 = 3S
int IFE = 1; // IF AGC amplifier enable
int AT = 0; // AGC control, ???
return (ATC << 5 | IFE << 4 | AT);
}
int
control_byte_7()
{
int SAS = 1; // SAW Digital mode
int AGD = 1; // AGC disable
int ADS = 0; // AGC detector into ADC converter
int T = 0; // Test mode, undocumented
return (SAS << 7 | AGD << 5 | ADS << 4 | T);
}
db_dtt768::db_dtt768(usrp_basic_sptr _usrp, int which)
: db_base(_usrp, which)
{
/*
* Control custom DTT76803-based daughterboard.
*
* @param usrp: instance of usrp.source_c
* @param which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
* @type which: int
*/
if(d_which == 0) {
d_i2c_addr = 0x60;
}
else {
d_i2c_addr = 0x62;
}
d_IF = 44e6;
d_f_ref = 125e3;
d_inverted = false;
set_gain((gain_min() + gain_max()) / 2.0);
bypass_adc_buffers(false);
}
db_dtt768::~db_dtt768()
{
}
float
db_dtt768::gain_min()
{
return 0;
}
float
db_dtt768::gain_max()
{
return 115;
}
float
db_dtt768::gain_db_per_step()
{
return 1;
}
bool
db_dtt768::set_gain(float gain)
{
assert(gain>=0 && gain<=115);
float rfgain, ifgain, pgagain;
if(gain > 60) {
rfgain = 60;
gain = gain - 60;
}
else {
rfgain = gain;
gain = 0;
}
if(gain > 35) {
ifgain = 35;
gain = gain - 35;
}
else {
ifgain = gain;
gain = 0;
}
pgagain = gain;
_set_rfagc(rfgain);
_set_ifagc(ifgain);
_set_pga(pgagain);
return true;
}
double
db_dtt768::freq_min()
{
return 44e6;
}
double
db_dtt768::freq_max()
{
return 900e6;
}
struct freq_result_t
db_dtt768::set_freq(double target_freq)
{
/*
* @returns (ok, actual_baseband_freq) where:
* ok is True or False and indicates success or failure,
* actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
*/
freq_result_t ret = {false, 0.0};
if(target_freq < freq_min() || target_freq > freq_max()) {
return ret;
}
double target_lo_freq = target_freq + d_IF; // High side mixing
int divisor = (int)(0.5+(target_lo_freq / d_f_ref));
double actual_lo_freq = d_f_ref*divisor;
if((divisor & ~0x7fff) != 0) { // must be 15-bits or less
return ret;
}
// build i2c command string
std::vector<int> buf(6);
buf[0] = (divisor >> 8) & 0xff; // DB1
buf[1] = divisor & 0xff; // DB2
buf[2] = control_byte_4();
buf[3] = control_byte_5(target_freq);
buf[4] = control_byte_6();
buf[5] = control_byte_7();
bool ok = usrp()->write_i2c(d_i2c_addr, int_seq_to_str (buf));
d_freq = actual_lo_freq - d_IF;
ret.ok = ok;
ret.baseband_freq = actual_lo_freq;
return ret;
}
bool
db_dtt768::is_quadrature()
{
/*
* Return True if this board requires both I & Q analog channels.
*
* This bit of info is useful when setting up the USRP Rx mux register.
*/
return false;
}
bool
db_dtt768::spectrum_inverted()
{
/*
* The 43.75 MHz version is inverted
*/
return d_inverted;
}
bool
db_dtt768::set_bw(float bw)
{
/*
* Choose the SAW filter bandwidth, either 7MHz or 8MHz)
*/
d_bw = bw;
set_freq(d_freq);
return true; // FIXME: propagate set_freq result
}
void
db_dtt768::_set_rfagc(float gain)
{
assert(gain <= 60 && gain >= 0);
// FIXME this has a 0.5V step between gain = 60 and gain = 59.
// Why are there two cases instead of a single linear case?
float voltage;
if(gain == 60) {
voltage = 4;
}
else {
voltage = gain/60.0 * 2.25 + 1.25;
}
int dacword = (int)(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 1, dacword);
}
void
db_dtt768::_set_ifagc(float gain)
{
assert(gain <= 35 && gain >= 0);
float voltage = gain/35.0 * 2.1 + 1.4;
int dacword = (int)(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 0, dacword);
}
void
db_dtt768::_set_pga(float pga_gain)
{
assert(pga_gain >=0 && pga_gain <=20);
if(d_which == 0) {
usrp()->set_pga (0, pga_gain);
}
else {
usrp()->set_pga (2, pga_gain);
}
}
|