1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
//
// Copyright 2008 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#include <usrp/db_dbs_rx.h>
#include <db_base_impl.h>
#include <cmath>
#include <cstdio>
/*****************************************************************************/
db_dbs_rx::db_dbs_rx(usrp_basic_sptr _usrp, int which)
: db_base(_usrp, which)
{
// Control DBS receiver based USRP daughterboard.
//
// @param usrp: instance of usrp.source_c
// @param which: which side: 0, 1 corresponding to RX_A or RX_B respectively
usrp()->_write_oe(d_which, 0x0001, 0x0001);
if(which == 0) {
d_i2c_addr = 0x67;
}
else {
d_i2c_addr = 0x65;
}
d_n = 950;
d_div2 = 0;
d_osc = 5;
d_cp = 3;
d_r = 4;
d_r_int = 1;
d_fdac = 127;
d_m = 2;
d_dl = 0;
d_ade = 0;
d_adl = 0;
d_gc1 = 0;
d_gc2 = 31;
d_diag = 0;
_enable_refclk(true);
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
bypass_adc_buffers(true);
}
db_dbs_rx::~db_dbs_rx()
{
shutdown();
}
void
db_dbs_rx::shutdown()
{
if (!d_is_shutdown){
d_is_shutdown = true;
// do whatever there is to do to shutdown orderly
_enable_refclk(false);
}
}
void
db_dbs_rx::_write_reg (int regno, int v)
{
//regno is in [0,5], v is value to write to register"""
assert (0 <= regno && regno <= 5);
std::vector<int> args(2);
args[0] = regno;
args[1] = v;
usrp()->write_i2c (d_i2c_addr, int_seq_to_str (args));
}
void
db_dbs_rx::_write_regs (int starting_regno, const std::vector<int> &vals)
{
// starting_regno is in [0,5],
// vals is a seq of integers to write to consecutive registers"""
//FIXME
std::vector<int> args;
args.push_back(starting_regno);
args.insert(args.end(), vals.begin(), vals.end());
usrp()->write_i2c (d_i2c_addr, int_seq_to_str (args));
}
std::vector<int>
db_dbs_rx::_read_status ()
{
//If successful, return list of two ints: [status_info, filter_DAC]"""
std::string s = usrp()->read_i2c (d_i2c_addr, 2);
if(s.size() != 2) {
std::vector<int> ret(0);
return ret;
}
return str_to_int_seq (s);
}
void
db_dbs_rx::_send_reg(int regno)
{
assert(0 <= regno && regno <= 5);
if(regno == 0)
_write_reg(0,(d_div2<<7) + (d_n>>8));
if(regno == 1)
_write_reg(1,d_n & 255);
if(regno == 2)
_write_reg(2,d_osc + (d_cp<<3) + (d_r_int<<5));
if(regno == 3)
_write_reg(3,d_fdac);
if(regno == 4)
_write_reg(4,d_m + (d_dl<<5) + (d_ade<<6) + (d_adl<<7));
if(regno == 5)
_write_reg(5,d_gc2 + (d_diag<<5));
}
// BW setting
void
db_dbs_rx::_set_m(int m)
{
assert(m>0 && m<32);
d_m = m;
_send_reg(4);
}
void
db_dbs_rx::_set_fdac(int fdac)
{
assert(fdac>=0 && fdac<128);
d_fdac = fdac;
_send_reg(3);
}
bool
db_dbs_rx::set_bw (float bw)
{
if (bw < 1e6 || bw > 33e6) {
fprintf(stderr, "db_dbs_rx::set_bw: bw (=%f) must be between 1e6 and 33e6 inclusive\n", bw);
return false;
}
// struct bw_t ret = {0, 0, 0};
int m_max, m_min, m_test, fdac_test;
if(bw >= 4e6)
m_max = int(std::min(31, (int)floor(_refclk_freq()/1e6)));
else if(bw >= 2e6) // Outside of Specs!
m_max = int(std::min(31, (int)floor(_refclk_freq()/.5e6)));
else // Way outside of Specs!
m_max = int(std::min(31, (int)floor(_refclk_freq()/.25e6)));
m_min = int(ceil(_refclk_freq()/2.5e6));
m_test = m_max;
while(m_test >= m_min) {
fdac_test = static_cast<int>(round(((bw * m_test / _refclk_freq())-4)/.145));
if(fdac_test > 127)
m_test = m_test - 1;
else
break;
}
if(m_test>=m_min && fdac_test>=0) {
_set_m(m_test);
_set_fdac(fdac_test);
//ret.m = d_m;
//ret.fdac = d_fdac;
//ret.div = _refclk_freq()/d_m*(4+0.145*d_fdac);
}
else {
fprintf(stderr, "db_dbs_rx::set_bw: failed\n");
return false;
}
return true;
}
// Gain setting
void
db_dbs_rx::_set_dl(int dl)
{
assert(dl == 0 || dl == 1);
d_dl = dl;
_send_reg(4);
}
void
db_dbs_rx::_set_gc2(int gc2)
{
assert(gc2<32 && gc2>=0);
d_gc2 = gc2;
_send_reg(5);
}
void
db_dbs_rx::_set_gc1(int gc1)
{
assert(gc1>=0 && gc1<4096);
d_gc1 = gc1;
usrp()->write_aux_dac(d_which, 0, gc1);
}
void
db_dbs_rx::_set_pga(int pga_gain)
{
assert(pga_gain>=0 && pga_gain<=20);
if(d_which == 0) {
usrp()->set_pga (0, pga_gain);
usrp()->set_pga (1, pga_gain);
}
else {
usrp()->set_pga (2, pga_gain);
usrp()->set_pga (3, pga_gain);
}
}
float
db_dbs_rx::gain_min()
{
return 0;
}
float
db_dbs_rx::gain_max()
{
return 104;
}
float
db_dbs_rx::gain_db_per_step()
{
return 1;
}
bool
db_dbs_rx::set_gain(float gain)
{
// Set the gain.
//
// @param gain: gain in decibels
// @returns True/False
if(!(gain>=0 && gain<105)) {
throw std::runtime_error("gain out of range\n");
}
int gc1=0, gc2=0, dl=0, pga=0;
if(gain < 56) {
gc1 = int((-gain*1.85/56.0 + 2.6)*4096.0/3.3);
gain = 0;
}
else {
gc1 = 0;
gain -= 56;
}
if(gain < 24) {
gc2 = static_cast<int>(round(31.0 * (1-gain/24.0)));
gain = 0;
}
else {
gc2 = 0;
gain -=24;
}
if(gain >= 4.58) {
dl = 1;
gain -= 4.58;
}
pga = gain;
_set_gc1(gc1);
_set_gc2(gc2);
_set_dl(dl);
_set_pga(pga);
return true;
}
// Frequency setting
void
db_dbs_rx::_set_osc(int osc)
{
assert(osc>=0 && osc<8);
d_osc = osc;
_send_reg(2);
}
void
db_dbs_rx::_set_cp(int cp)
{
assert(cp>=0 && cp<4);
d_cp = cp;
_send_reg(2);
}
void
db_dbs_rx::_set_n(int n)
{
assert(n>256 && n<32768);
d_n = n;
_send_reg(0);
_send_reg(1);
}
void
db_dbs_rx::_set_div2(int div2)
{
assert(div2 == 0 || div2 == 1);
d_div2 = div2;
_send_reg(0);
}
void
db_dbs_rx::_set_r(int r)
{
assert(r>=0 && r<128);
d_r = r;
d_r_int = static_cast<int>(round(log10(r)/log10(2)) - 1);
_send_reg(2);
}
// FIXME How do we handle ADE and ADL properly?
void
db_dbs_rx::_set_ade(int ade)
{
assert(ade == 0 || ade == 1);
d_ade = ade;
_send_reg(4);
}
double
db_dbs_rx::freq_min()
{
return 500e6;
}
double
db_dbs_rx::freq_max()
{
return 2.6e9;
}
struct freq_result_t
db_dbs_rx::set_freq(double freq)
{
// Set the frequency.
//
// @param freq: target RF frequency in Hz
// @type freq: double
//
// @returns (ok, actual_baseband_freq) where:
// ok is True or False and indicates success or failure,
// actual_baseband_freq is RF frequency that corresponds to DC in the IF.
freq_result_t args = {false, 0};
if(!(freq>=freq_min() && freq<=freq_max())) {
return args;
}
double vcofreq;
if(freq<1150e6) {
_set_div2(0);
vcofreq = 4 * freq;
}
else {
_set_div2(1);
vcofreq = 2 * freq;
}
_set_ade(1);
int rmin = std::max(2, (int)(_refclk_freq()/2e6));
int rmax = std::min(128, (int)(_refclk_freq()/500e3));
int r = 2;
int n = 0;
int best_r = 2;
int best_n = 0;
int best_delta = 10e6;
int delta;
while(r <= rmax) {
n = static_cast<int>(round(freq/(_refclk_freq()/r)));
if(r<rmin || n<256) {
r = r * 2;
continue;
}
delta = (int)fabs(n*_refclk_freq()/r - freq);
if(delta < 75e3) {
best_r = r;
best_n = n;
break;
}
if(delta < best_delta*0.9) {
best_r = r;
best_n = n;
best_delta = delta;
}
r = r * 2;
}
_set_r(best_r);
_set_n(static_cast<int>(round(best_n)));
int vco;
if(vcofreq < 2433e6)
vco = 0;
else if(vcofreq < 2711e6)
vco=1;
else if(vcofreq < 3025e6)
vco=2;
else if(vcofreq < 3341e6)
vco=3;
else if(vcofreq < 3727e6)
vco=4;
else if(vcofreq < 4143e6)
vco=5;
else if(vcofreq < 4493e6)
vco=6;
else
vco=7;
_set_osc(vco);
// Set CP current
int adc_val = 0;
std::vector<int> bytes(2);
while(adc_val == 0 || adc_val == 7) {
bytes = _read_status();
adc_val = bytes[0] >> 2;
if(adc_val == 0) {
if(vco <= 0) {
return args;
}
else {
vco = vco - 1;
}
}
else if(adc_val == 7) {
if(vco >= 7) {
return args;
}
else {
vco = vco + 1;
}
}
_set_osc(vco);
}
if(adc_val == 1 || adc_val == 2) {
_set_cp(1);
}
else if(adc_val == 3 || adc_val == 4) {
_set_cp(2);
}
else {
_set_cp(3);
}
args.ok = true;
args.baseband_freq = d_n * _refclk_freq() / d_r;
return args;
}
int
db_dbs_rx::_refclk_divisor()
{
//Return value to stick in REFCLK_DIVISOR register
return 16;
}
bool
db_dbs_rx::is_quadrature()
{
// Return True if this board requires both I & Q analog channels.
return true;
}
|