1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
|
/* -*- c++ -*- */
/*
* Copyright 2007 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <gmac.h>
#include <mb_mblock.h>
#include <mb_runtime.h>
#include <mb_protocol_class.h>
#include <mb_exception.h>
#include <mb_msg_queue.h>
#include <mb_message.h>
#include <mb_mblock_impl.h>
#include <mb_msg_accepter.h>
#include <mb_class_registry.h>
#include <pmt.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <ui_nco.h>
#include <symbols_usrp_server_cs.h>
#include <symbols_usrp_channel.h>
#include <symbols_usrp_low_level_cs.h>
#include <symbols_usrp_tx.h>
#include <symbols_usrp_rx.h>
#include <gmac_symbols.h>
static bool verbose = true;
gmac::gmac(mb_runtime *rt, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(rt, instance_name, user_arg),
d_us_rx_chan(PMT_NIL), d_us_tx_chan(PMT_NIL)
{
// When the MAC layer is initialized, we must connect to the USRP and setup
// channels. We begin by defining ports to connect to the 'usrp_server' block
// and then initialize the USRP by opening it through the 'usrp_server.'
// Initialize the ports
define_ports();
// Initialize the connection to the USRP
initialize_usrp();
}
gmac::~gmac()
{
}
// The full functionality of GMAC is based on messages passed back and forth
// between the application and a physical layer and/or usrp_server. Each
// message triggers additional events, states, and messages to be sent.
void gmac::handle_message(mb_message_sptr msg)
{
// The MAC functionality is dispatched based on the event, which is the
// driving force of the MAC. The event can be anything from incoming samples
// to a message to change the carrier sense threshold.
pmt_t event = msg->signal();
pmt_t data = msg->data();
pmt_t port_id = msg->port_id();
pmt_t handle = PMT_F;
pmt_t status = PMT_F;
pmt_t dict = PMT_NIL;
std::string error_msg;
switch(d_state) {
//---------------------------- INIT ------------------------------------//
// In the INIT state, there should be no messages across the ports.
case INIT:
error_msg = "no messages should be passed during the INIT state:";
goto unhandled;
//-------------------------- OPENING USRP -------------------------------//
// In this state we expect a response from usrp_server over the CS channel
// as to whether or not the opening of the USRP was successful. If so, we
// switch states to allocating the channels for use.
case OPENING_USRP:
if(pmt_eq(event, s_response_open)
&& pmt_eq(d_us_cs->port_symbol(), port_id)) {
status = pmt_nth(1, data); // PMT_T or PMT_F
if(pmt_eq(status, PMT_T)) { // on success, allocate channels!
allocate_channels();
return;
}
else {
error_msg = "failed to open usrp:";
goto bail;
}
}
goto unhandled; // all other messages not handled in this state
//------------------------ ALLOCATING CHANNELS --------------------------//
// When allocating channels, we need to wait for 2 responses from USRP
// server: one for TX and one for RX. Both are initialized to NIL so we
// know to continue to the next state once both are set.
case ALLOCATING_CHANNELS:
// ************* TX ALLOCATION RESPONSE ***************** //
if(pmt_eq(event, s_response_allocate_channel)
&& pmt_eq(d_us_tx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
if(pmt_eq(status, PMT_T)) { // extract channel on success
d_us_tx_chan = pmt_nth(2, data);
if(verbose)
std::cout << "[GMAC] Received TX allocation"
<< " on channel " << d_us_tx_chan << std::endl;
// If the RX has also been allocated already, we can continue
if(!pmt_eqv(d_us_rx_chan, PMT_NIL)) {
//enter_receiving();
initialize_gmac();
}
return;
}
else { // TX allocation failed
error_msg = "failed to allocate TX channel:";
goto bail;
}
}
// ************* RX ALLOCATION RESPONSE ****************//
if(pmt_eq(event, s_response_allocate_channel)
&& pmt_eq(d_us_rx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
if(pmt_eq(status, PMT_T)) {
d_us_rx_chan = pmt_nth(2, data);
if(verbose)
std::cout << "[GMAC] Received RX allocation"
<< " on channel " << d_us_rx_chan << std::endl;
// If the TX has also been allocated already, we can continue
if(!pmt_eqv(d_us_tx_chan, PMT_NIL)) {
//enter_receiving();
initialize_gmac();
}
return;
}
else { // RX allocation failed
error_msg = "failed to allocate RX channel:";
goto bail;
}
}
goto unhandled;
//----------------------------- INIT GMAC --------------------------------//
// In the INIT_GMAC state, now that the USRP is initialized we can do things
// like right the carrier sense threshold to the FPGA register.
case INIT_GMAC:
goto unhandled;
//----------------------------- IDLE ------------------------------------//
// In the idle state the MAC is not quite 'idle', it is just not doing
// anything specific. It is still being passive with data between the
// application and the lower layer.
case IDLE:
//-------- TX PORT ----------------------------------------------------//
if(pmt_eq(d_tx->port_symbol(), port_id)) {
//-------- INCOMING PACKET ------------------------------------------//
if(pmt_eq(event, s_cmd_tx_pkt)) {
handle_cmd_tx_pkt(data);
return;
}
}
//--------- USRP TX PORT ----------------------------------------------//
if(pmt_eq(d_us_tx->port_symbol(), port_id)) {
//-------- INCOMING PACKET RESPONSE ---------------------------------//
if(pmt_eq(event, s_response_xmit_raw_frame)) {
handle_response_xmit_raw_frame(data);
return;
}
}
//--------- CS PORT ---------------------------------------------------//
if(pmt_eq(d_cs->port_symbol(), port_id)) {
//------- ENABLE CARRIER SENSE --------------------------------------//
if(pmt_eq(event, s_cmd_carrier_sense_enable)) {
handle_cmd_carrier_sense_enable(data);
return;
}
//------- CARRIER SENSE THRESHOLD -----------------------------------//
if(pmt_eq(event, s_cmd_carrier_sense_threshold)) {
handle_cmd_carrier_sense_threshold(data);
return;
}
//------- CARRIER SENSE DEADLINE ------------------------------------//
if(pmt_eq(event, s_cmd_carrier_sense_deadline)) {
handle_cmd_carrier_sense_deadline(data);
return;
}
//------- DISABLE CARRIER SENSE -------------------------------------//
if(pmt_eq(event, s_cmd_carrier_sense_disable)) {
handle_cmd_carrier_sense_disable(data);
return;
}
}
goto unhandled;
//------------------------ CLOSING CHANNELS -----------------------------//
case CLOSING_CHANNELS:
if (pmt_eq(event, s_response_deallocate_channel)
&& pmt_eq(d_us_tx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
if(pmt_eq(status, PMT_T)) {
d_us_tx_chan = PMT_NIL;
if(verbose)
std::cout << "[GMAC] Received TX deallocation\n";
// If the RX is also deallocated, we can close the USRP
if(pmt_eq(d_us_rx_chan, PMT_NIL))
close_usrp();
return;
} else {
error_msg = "failed to deallocate TX channel:";
goto bail;
}
}
if (pmt_eq(event, s_response_deallocate_channel)
&& pmt_eq(d_us_rx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
// If successful, set the port to NIL
if(pmt_eq(status, PMT_T)) {
d_us_rx_chan = PMT_NIL;
if(verbose)
std::cout << "[GMAC] Received RX deallocation\n";
// If the TX is also deallocated, we can close the USRP
if(pmt_eq(d_us_tx_chan, PMT_NIL))
close_usrp();
return;
} else {
error_msg = "failed to deallocate RX channel:";
goto bail;
}
}
goto unhandled;
//-------------------------- CLOSING USRP -------------------------------//
case CLOSING_USRP:
goto unhandled;
}
// An error occured, print it, and shutdown all m-blocks
bail:
std::cerr << error_msg << data
<< "status = " << status << std::endl;
shutdown_all(PMT_F);
return;
// Received an unhandled message for a specific state
unhandled:
if(0 && verbose && !pmt_eq(event, pmt_intern("%shutdown")))
std::cout << "[GMAC] unhandled msg: " << msg
<< "in state "<< d_state << std::endl;
}
// The MAC layer connects to 'usrp_server' which has a control/status channel,
// a TX, and an RX port. The MAC layer can then relay TX/RX data back and
// forth to the application, or a physical layer once available.
void gmac::define_ports()
{
// Ports we use to connect to usrp_server
d_us_tx = define_port("us-tx0", "usrp-tx", false, mb_port::INTERNAL);
d_us_rx = define_port("us-rx0", "usrp-rx", false, mb_port::INTERNAL);
d_us_cs = define_port("us-cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Ports applications used to connect to us
d_tx = define_port("tx0", "gmac-tx", true, mb_port::EXTERNAL);
d_rx = define_port("rx0", "gmac-rx", true, mb_port::EXTERNAL);
d_cs = define_port("cs", "gmac-cs", true, mb_port::EXTERNAL);
}
// To initialize the USRP we must pass several parameters to 'usrp_server' such
// as the RBF to use, and the interpolation/decimation rate. The MAC layer will
// then pass these parameters to the block with a message to establish the
// connection to the USRP.
void gmac::initialize_usrp()
{
if(verbose)
std::cout << "[GMAC] Initializing USRP\n";
// The initialization parameters are passed to usrp_server via a PMT
// dictionary.
pmt_t usrp_dict = pmt_make_dict();
// Specify the RBF to use
pmt_dict_set(usrp_dict,
pmt_intern("rbf"),
pmt_intern("test2.rbf"));
pmt_dict_set(usrp_dict,
pmt_intern("interp-tx"),
pmt_from_long(128));
pmt_dict_set(usrp_dict,
pmt_intern("decim-rx"),
pmt_from_long(16));
// Center frequency
pmt_dict_set(usrp_dict,
pmt_intern("rf-freq"),
pmt_from_long((long)10e6));
// Default is to use USRP considered '0' (incase of multiple)
d_which_usrp = pmt_from_long(0);
define_component("USRP-SERVER", "usrp_server", usrp_dict);
connect("self", "us-tx0", "USRP-SERVER", "tx0");
connect("self", "us-rx0", "USRP-SERVER", "rx0");
connect("self", "us-cs", "USRP-SERVER", "cs");
// Finally, enter the OPENING_USRP state by sending a request to open the
// USRP.
open_usrp();
}
// In the initialization state of the MAC layer we set default values for
// several functionalities.
void gmac::initialize_gmac()
{
// The initial state is the INIT state.
d_state = INIT_GMAC;
// Set carrier sense to enabled by default with the specified threshold and
// the deadline to 0 -- which is wait forever.
set_carrier_sense(true, 25, 0, PMT_NIL);
// Can now notify the application that we are initialized
d_cs->send(s_response_gmac_initialized,
pmt_list2(PMT_NIL, PMT_T));
// The MAC enters an IDLE state where it waits for messages and dispatches
// based on them
enter_idle();
}
// Method for setting the carrier sense and an associated threshold which is
// written to a register on the FPGA, which it will read if the CS flag is set
// and perform carrier sense based on.
//
// We currently do not wait for the successful response for the write to
// register command, we assume it will succeed else the MAC must
void gmac::set_carrier_sense(bool toggle, long threshold, long deadline, pmt_t invocation)
{
d_carrier_sense = toggle;
// Only waste the bandwidth and processing of a C/S packet if needed
if(threshold != d_cs_thresh) {
d_us_tx->send(s_cmd_to_control_channel, // C/S packet
pmt_list2(invocation, // invoc handle
pmt_list1(
pmt_list2(s_op_write_reg,
pmt_list2(
pmt_from_long(REG_CS_THRESH),
pmt_from_long(threshold))))));
d_cs_thresh = threshold;
if(verbose)
std::cout << "[GMAC] Changing CS threshold: " << d_cs_thresh << std::endl;
}
if(deadline != d_cs_deadline) {
d_us_tx->send(s_cmd_to_control_channel, // C/S packet
pmt_list2(invocation, // invoc handle
pmt_list1(
pmt_list2(s_op_write_reg,
pmt_list2(
pmt_from_long(REG_CS_DEADLINE),
pmt_from_long(deadline))))));
d_cs_deadline = deadline;
if(verbose)
std::cout << "[GMAC] Changing CS deadline: " << d_cs_deadline << std::endl;
}
if(verbose)
std::cout << "[GMAC] Setting carrier sense to " << toggle << std::endl;
}
// The following sends a command to open the USRP, which will upload the
// specified RBF when creating the instance of the USRP server and set all other
// relevant parameters.
void gmac::open_usrp()
{
d_state = OPENING_USRP;
d_us_cs->send(s_cmd_open, pmt_list2(PMT_NIL, d_which_usrp));
if(verbose)
std::cout << "[GMAC] Opening USRP "
<< d_which_usrp << std::endl;
}
// Before sending the close to the USRP we wait a couple seconds to let any data
// through the USB exit, else a bug in the driver will kick an error and cause
// an abnormal termination.
void gmac::close_usrp()
{
d_state = CLOSING_USRP;
sleep(2);
d_us_cs->send(s_cmd_close, pmt_list1(PMT_NIL));
}
// RX and TX channels must be allocated so that the USRP server can
// properly share bandwidth across multiple USRPs. No commands will be
// successful to the USRP through the USRP server on the TX or RX channels until
// a bandwidth allocation has been received.
void gmac::allocate_channels()
{
d_state = ALLOCATING_CHANNELS;
if(verbose)
std::cout << "[GMAC] Sending channel allocation requests\n";
long capacity = (long) 16e6;
d_us_tx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(capacity)));
d_us_rx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(capacity)));
}
// Before closing the USRP connection, we deallocate our channels so that the
// capacity can be reused.
void gmac::close_channels()
{
d_state = CLOSING_CHANNELS;
d_us_tx->send(s_cmd_deallocate_channel, pmt_list2(PMT_NIL, d_us_tx_chan));
d_us_rx->send(s_cmd_deallocate_channel, pmt_list2(PMT_NIL, d_us_rx_chan));
if(verbose)
std::cout << "[GMAC] Closing channels...\n";
}
// Used to enter the receiving state
void gmac::enter_receiving()
{
d_us_rx->send(s_cmd_start_recv_raw_samples,
pmt_list2(PMT_F,
d_us_rx_chan));
if(verbose)
std::cout << "[GMAC] Started RX sample stream\n";
}
// A simple idle state, nothing more to it.
void gmac::enter_idle()
{
d_state = IDLE;
}
// Handles the transmission of a pkt from the application. The invocation
// handle is passed on but a response is not given back to the application until
// the response is passed from usrp_server. This ensures that the MAC passes
// back the success or failure. Furthermore, the MAC could decide to retransmit
// on a failure based on the result of the packet transmission.
//
// This should eventually be connected to a physically layer rather than
// directly to usrp_server. (d_us_tx should be replaced with a different
// connection)
void gmac::handle_cmd_tx_pkt(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t dst = pmt_nth(1, data);
pmt_t samples = pmt_nth(2, data);
pmt_t pkt_properties = pmt_nth(3, data);
pmt_t us_tx_properties = pmt_make_dict();
// Set the packet to be carrier sensed?
if(carrier_sense_pkt(pkt_properties))
pmt_dict_set(us_tx_properties,
pmt_intern("carrier-sense"),
PMT_T);
pmt_t timestamp = pmt_from_long(0xffffffff); // NOW
// Construct the proper message for USRP server
d_us_tx->send(s_cmd_xmit_raw_frame,
pmt_list5(invocation_handle,
d_us_tx_chan,
samples,
timestamp,
us_tx_properties));
if(verbose && 0)
std::cout << "[GMAC] Transmitted packet\n";
}
// Handles a response from the USRP server about the transmission of a frame,
// whether it was successful or failed. This should eventually be replaced with
// a response from the PHY layer. This is where a retransmit could be
// implemented.
void gmac::handle_response_xmit_raw_frame(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
d_tx->send(s_response_tx_pkt,
pmt_list2(invocation_handle,
status));
}
// This method determines whether carrier sense should be enabled based on two
// properties. The first is the MAC setting, which the user can set to carrier
// sense packets by default or not. The second is a per packet setting, which
// can be used to override the MAC setting for the given packet only.
bool gmac::carrier_sense_pkt(pmt_t pkt_properties)
{
// First we extract the per packet properties to check the per packet setting
// if it exists
if(pmt_is_dict(pkt_properties)) {
if(pmt_t pkt_cs = pmt_dict_ref(pkt_properties,
pmt_intern("carrier-sense"),
PMT_NIL)) {
// If the per packet property says true, enable carrier sense regardless
// of the MAC setting
if(pmt_eqv(pkt_cs, PMT_T))
return true;
// If the per packet setting says false, disable carrier sense regardless
// of the MAC setting
else if(pmt_eqv(pkt_cs, PMT_F))
return false;
}
}
// If we've hit this point, the packet properties did not state whether
// carrier sense should be used or not, so we use the MAC setting
if(d_carrier_sense)
return true;
else
return false;
}
// This method is envoked by an incoming cmd-enable-carrier-sense signal on the
// C/S port. It can be used to re-adjust the threshold or simply enabled
// carrier sense. When a threshold is not provided, the MAC will use an
// averaging algorithm to determine the threshold (in the future).
void gmac::handle_cmd_carrier_sense_enable(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t threshold = pmt_nth(1, data);
pmt_t deadline = pmt_nth(2, data);
long l_threshold, l_deadline;
// FIXME: for now, if threshold is NIL, we do not change the threshold.
// This should be replaced with an averaging algorithm
if(pmt_eqv(threshold, PMT_NIL))
l_threshold = d_cs_thresh;
else
l_threshold = pmt_to_long(threshold);
// If the deadline is NIL, we do not change the value
if(pmt_eqv(threshold, PMT_NIL))
l_deadline = d_cs_deadline;
else
l_deadline = pmt_to_long(deadline);
set_carrier_sense(true, l_threshold, l_deadline, invocation_handle);
}
// This method is called when an incoming disable carrier sense command is sent
// over the control status channel. It so far does not ellicit a response, this
// needs to be added correctly. It needs to wait for the response for the C/S
// packet from usrp_server.
void gmac::handle_cmd_carrier_sense_disable(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
// We don't change the threshold, we leave it as is because the application
// did not request that it changes, only to disable carrier sense.
set_carrier_sense(false, d_cs_thresh, d_cs_deadline, invocation_handle);
}
// When the app requests that the threshold changes, the state of the carrier
// sense should not change. If it was enabled, it should remain enabled.
// Likewise if it was disabled. The deadline value should also remain
// unchanged.
void gmac::handle_cmd_carrier_sense_threshold(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t threshold = pmt_nth(1, data);
long l_threshold;
// FIXME: for now, if threshold is NIL, we do not change the threshold.
// This should be replaced with an averaging algorithm
if(pmt_eqv(threshold, PMT_NIL))
l_threshold = d_cs_thresh;
else
l_threshold = pmt_to_long(threshold);
set_carrier_sense(d_carrier_sense, l_threshold, d_cs_deadline, invocation_handle);
}
// Ability to change the deadline using a C/S packet. The state of all other
// carrier sense parameters should not change.
void gmac::handle_cmd_carrier_sense_deadline(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t deadline = pmt_nth(1, data);
long l_deadline;
// If the deadline passed is NIL, do *not* change the value.
if(pmt_eqv(deadline, PMT_NIL))
l_deadline = d_cs_deadline;
else
l_deadline = pmt_to_long(deadline);
set_carrier_sense(d_carrier_sense, d_cs_thresh, l_deadline, invocation_handle);
}
REGISTER_MBLOCK_CLASS(gmac);
|