summaryrefslogtreecommitdiff
path: root/grc/src/platforms/python/FlowGraph.py
blob: b2863ef7203d27c752daa5e087b75a396e495ba0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
Copyright 2008, 2009 Free Software Foundation, Inc.
This file is part of GNU Radio

GNU Radio Companion is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

GNU Radio Companion is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
"""

from utils import expr_utils
from .. base.FlowGraph import FlowGraph as _FlowGraph
from Block import Block
from Connection import Connection

def _get_value_expr(variable_block):
	"""
	Get the expression to evaluate from the value param.
	Parameter blocks need to be evaluated so the stringify flag can be determined.
	@param variable_block the variable or parameter block
	@return the expression string
	"""
	value_param = variable_block.get_param('value')
	if variable_block.get_key() == 'parameter': value_param.evaluate()
	return value_param.to_code()

class FlowGraph(_FlowGraph):

	#_eval_cache = dict()
	def _eval(self, code, namespace):
		"""
		Evaluate the code with the given namespace.
		@param code a string with python code
		@param namespace a dict representing the namespace
		@return the resultant object
		"""
		#check cache
		#if self._eval_cache.has_key(code) and self._eval_cache[code][0] == namespace:
		#	return self._eval_cache[code][1]
		#evaluate
		result = eval(code, namespace, namespace)
		#self._eval_cache[code] = (namespace.copy(), result)
		return result

	def _get_io_signature(self, pad_key):
		"""
		Get an io signature for this flow graph.
		The pad key determines the directionality of the io signature.
		@param pad_key a string of pad_source or pad_sink
		@return a dict with: type, nports, vlen, size
		"""
		pads = filter(lambda b: b.get_key() == pad_key, self.get_enabled_blocks())
		if not pads: return {
			'nports': '0',
			'type': '',
			'vlen': '0',
			'size': '0',
		}
		pad = pads[0] #take only the first, user should not have more than 1
		#load io signature
		return {
			'nports': str(pad.get_param('nports').evaluate()),
			'type': str(pad.get_param('type').evaluate()),
			'vlen': str(pad.get_param('vlen').evaluate()),
			'size': pad.get_param('type').get_opt('size'),
		}

	def get_input_signature(self):
		"""
		Get the io signature for the input side of this flow graph.
		The io signature with be "0", "0" if no pad source is present.
		@return a string tuple of type, num_ports, port_size
		"""
		return self._get_io_signature('pad_source')

	def get_output_signature(self):
		"""
		Get the io signature for the output side of this flow graph.
		The io signature with be "0", "0" if no pad sink is present.
		@return a string tuple of type, num_ports, port_size
		"""
		return self._get_io_signature('pad_sink')

	def get_imports(self):
		"""
		Get a set of all import statments in this flow graph namespace.
		@return a set of import statements
		"""
		imports = sum([block.get_imports() for block in self.get_enabled_blocks()], [])
		imports = sorted(set(imports))
		return imports

	def get_variables(self):
		"""
		Get a list of all variables in this flow graph namespace.
		Exclude paramterized variables.
		@return a sorted list of variable blocks in order of dependency (indep -> dep)
		"""
		variables = filter(lambda b: b.get_key() in (
			'variable', 'variable_slider', 'variable_chooser', 'variable_text_box'
		), self.get_enabled_blocks())
		#map var id to variable block
		id2var = dict([(var.get_id(), var) for var in variables])
		#map var id to variable code
		#variable code is a concatenation of all param code (without the id param)
		id2expr = dict([(var.get_id(), var.get_param('value').get_value()) for var in variables])
		#sort according to dependency
		sorted_ids = expr_utils.sort_variables(id2expr)
		#create list of sorted variable blocks
		variables = [id2var[id] for id in sorted_ids]
		return variables

	def get_parameters(self):
		"""
		Get a list of all paramterized variables in this flow graph namespace.
		@return a list of paramterized variables
		"""
		parameters = filter(lambda b: b.get_key() == 'parameter', self.get_enabled_blocks())
		return parameters

	def evaluate(self, expr):
		"""
		Evaluate the expression.
		@param expr the string expression
		@throw Exception bad expression
		@return the evaluated data
		"""
		if self.is_flagged():
			self.deflag()
			#reload namespace
			n = dict()
			#load imports
			for imp in self.get_imports():
				try: exec imp in n
				except: pass
			#load parameters
			np = dict()
			for parameter in self.get_parameters():
				try:
					e = self._eval(_get_value_expr(parameter), n)
					np[parameter.get_id()] = e
				except: pass
			n.update(np) #merge param namespace
			#load variables
			for variable in self.get_variables():
				try:
					e = self._eval(_get_value_expr(variable), n)
					n[variable.get_id()] = e
				except: pass
			#make namespace public
			self.n = n
		#evaluate
		e = self._eval(expr, self.n)
		return e