1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
#!/usr/bin/env python
#
# Copyright 2003,2004,2005,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gru, window
from gnuradio.wxgui import stdgui2
import wx
import gnuradio.wxgui.plot as plot
import Numeric
import os
import threading
import math
default_fftsink_size = (640,240)
default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)
class waterfall_sink_base(object):
def __init__(self, input_is_real=False, baseband_freq=0,
sample_rate=1, fft_size=512,
fft_rate=default_fft_rate,
average=False, avg_alpha=None, title=''):
# initialize common attributes
self.baseband_freq = baseband_freq
self.sample_rate = sample_rate
self.fft_size = fft_size
self.fft_rate = fft_rate
self.average = average
if avg_alpha is None:
self.avg_alpha = 2.0 / fft_rate
else:
self.avg_alpha = avg_alpha
self.title = title
self.input_is_real = input_is_real
self.msgq = gr.msg_queue(2) # queue up to 2 messages
def set_average(self, average):
self.average = average
if average:
self.avg.set_taps(self.avg_alpha)
else:
self.avg.set_taps(1.0)
def set_avg_alpha(self, avg_alpha):
self.avg_alpha = avg_alpha
def set_baseband_freq(self, baseband_freq):
self.baseband_freq = baseband_freq
def set_sample_rate(self, sample_rate):
self.sample_rate = sample_rate
self._set_n()
def _set_n(self):
self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
class waterfall_sink_f(gr.hier_block2, waterfall_sink_base):
def __init__(self, parent, baseband_freq=0,
y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
fft_rate=default_fft_rate, average=False, avg_alpha=None,
title='', size=default_fftsink_size):
gr.hier_block2.__init__(self, "waterfall_sink_f",
gr.io_signature(1, 1, gr.sizeof_float),
gr.io_signature(0,0,0))
waterfall_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq,
sample_rate=sample_rate, fft_size=fft_size,
fft_rate=fft_rate,
average=average, avg_alpha=avg_alpha, title=title)
self.define_component("s2p", gr.serial_to_parallel(gr.sizeof_float, self.fft_size))
self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size,
max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
self.define_component("one_in_n", self.one_in_n)
mywindow = window.blackmanharris(self.fft_size)
self.define_component("fft", gr.fft_vfc(self.fft_size, True, mywindow))
self.define_component("c2mag", gr.complex_to_mag(self.fft_size))
self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
self.define_component("avg", self.avg)
self.define_component("log", gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)))
self.define_component("sink", gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True))
# Ultimately this will be
# self.connect("self s2p one_in_n fft c2mag avg log sink")
self.connect("self", 0, "s2p", 0)
self.connect("s2p", 0, "one_in_n", 0)
self.connect("one_in_n", 0, "fft", 0)
self.connect("fft", 0, "c2mag", 0)
self.connect("c2mag", 0, "avg", 0)
self.connect("avg", 0, "log", 0)
self.connect("log", 0, "sink", 0)
self.win = waterfall_window(self, parent, size=size)
self.set_average(self.average)
class waterfall_sink_c(gr.hier_block2, waterfall_sink_base):
def __init__(self, parent, baseband_freq=0,
y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
fft_rate=default_fft_rate, average=False, avg_alpha=None,
title='', size=default_fftsink_size):
gr.hier_block2.__init__(self, "waterfall_sink_f",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(0,0,0))
waterfall_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq,
sample_rate=sample_rate, fft_size=fft_size,
fft_rate=fft_rate,
average=average, avg_alpha=avg_alpha, title=title)
self.define_component("s2p", gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size))
self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size,
max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
self.define_component("one_in_n", self.one_in_n)
mywindow = window.blackmanharris(self.fft_size)
self.define_component("fft", gr.fft_vcc(self.fft_size, True, mywindow))
self.define_component("c2mag", gr.complex_to_mag(self.fft_size))
self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
self.define_component("avg", self.avg)
self.define_component("log", gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)))
self.define_component("sink", gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True))
# Ultimately this will be
# self.connect("self s2p one_in_n fft c2mag avg log sink")
self.connect("self", 0, "s2p", 0)
self.connect("s2p", 0, "one_in_n", 0)
self.connect("one_in_n", 0, "fft", 0)
self.connect("fft", 0, "c2mag", 0)
self.connect("c2mag", 0, "avg", 0)
self.connect("avg", 0, "log", 0)
self.connect("log", 0, "sink", 0)
self.win = waterfall_window(self, parent, size=size)
self.set_average(self.average)
# ------------------------------------------------------------------------
myDATA_EVENT = wx.NewEventType()
EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
class DataEvent(wx.PyEvent):
def __init__(self, data):
wx.PyEvent.__init__(self)
self.SetEventType (myDATA_EVENT)
self.data = data
def Clone (self):
self.__class__ (self.GetId())
class input_watcher (threading.Thread):
def __init__ (self, msgq, fft_size, event_receiver, **kwds):
threading.Thread.__init__ (self, **kwds)
self.setDaemon (1)
self.msgq = msgq
self.fft_size = fft_size
self.event_receiver = event_receiver
self.keep_running = True
self.start ()
def run (self):
while (self.keep_running):
msg = self.msgq.delete_head() # blocking read of message queue
itemsize = int(msg.arg1())
nitems = int(msg.arg2())
s = msg.to_string() # get the body of the msg as a string
# There may be more than one FFT frame in the message.
# If so, we take only the last one
if nitems > 1:
start = itemsize * (nitems - 1)
s = s[start:start+itemsize]
complex_data = Numeric.fromstring (s, Numeric.Float32)
de = DataEvent (complex_data)
wx.PostEvent (self.event_receiver, de)
del de
class waterfall_window (wx.Panel):
def __init__ (self, fftsink, parent, id = -1,
pos = wx.DefaultPosition, size = wx.DefaultSize,
style = wx.DEFAULT_FRAME_STYLE, name = ""):
wx.Panel.__init__(self, parent, id, pos, size, style, name)
self.fftsink = fftsink
self.bm = wx.EmptyBitmap(self.fftsink.fft_size, 300, -1)
self.scale_factor = 5.0 # FIXME should autoscale, or set this
dc1 = wx.MemoryDC()
dc1.SelectObject(self.bm)
dc1.Clear()
self.pens = self.make_pens()
wx.EVT_PAINT( self, self.OnPaint )
wx.EVT_CLOSE (self, self.on_close_window)
EVT_DATA_EVENT (self, self.set_data)
self.build_popup_menu()
wx.EVT_CLOSE (self, self.on_close_window)
self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self)
def on_close_window (self, event):
print "waterfall_window: on_close_window"
self.keep_running = False
def const_list(self,const,len):
return [const] * len
def make_colormap(self):
r = []
r.extend(self.const_list(0,96))
r.extend(range(0,255,4))
r.extend(self.const_list(255,64))
r.extend(range(255,128,-4))
g = []
g.extend(self.const_list(0,32))
g.extend(range(0,255,4))
g.extend(self.const_list(255,64))
g.extend(range(255,0,-4))
g.extend(self.const_list(0,32))
b = range(128,255,4)
b.extend(self.const_list(255,64))
b.extend(range(255,0,-4))
b.extend(self.const_list(0,96))
return (r,g,b)
def make_pens(self):
(r,g,b) = self.make_colormap()
pens = []
for i in range(0,256):
colour = wx.Colour(r[i], g[i], b[i])
pens.append( wx.Pen(colour, 2, wx.SOLID))
return pens
def OnPaint(self, event):
dc = wx.PaintDC(self)
self.DoDrawing(dc)
def DoDrawing(self, dc=None):
if dc is None:
dc = wx.ClientDC(self)
dc.DrawBitmap(self.bm, 0, 0, False )
def const_list(self,const,len):
a = [const]
for i in range(1,len):
a.append(const)
return a
def make_colormap(self):
r = []
r.extend(self.const_list(0,96))
r.extend(range(0,255,4))
r.extend(self.const_list(255,64))
r.extend(range(255,128,-4))
g = []
g.extend(self.const_list(0,32))
g.extend(range(0,255,4))
g.extend(self.const_list(255,64))
g.extend(range(255,0,-4))
g.extend(self.const_list(0,32))
b = range(128,255,4)
b.extend(self.const_list(255,64))
b.extend(range(255,0,-4))
b.extend(self.const_list(0,96))
return (r,g,b)
def set_data (self, evt):
dB = evt.data
L = len (dB)
dc1 = wx.MemoryDC()
dc1.SelectObject(self.bm)
dc1.Blit(0,1,self.fftsink.fft_size,300,dc1,0,0,wx.COPY,False,-1,-1)
x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq))
if x >= 1e9:
sf = 1e-9
units = "GHz"
elif x >= 1e6:
sf = 1e-6
units = "MHz"
else:
sf = 1e-3
units = "kHz"
if self.fftsink.input_is_real: # only plot 1/2 the points
d_max = L/2
p_width = 2
else:
d_max = L/2
p_width = 1
scale_factor = self.scale_factor
if self.fftsink.input_is_real: # real fft
for x_pos in range(0, d_max):
value = int(dB[x_pos] * scale_factor)
value = min(255, max(0, value))
dc1.SetPen(self.pens[value])
dc1.DrawRectangle(x_pos*p_width, 0, p_width, 1)
else: # complex fft
for x_pos in range(0, d_max): # positive freqs
value = int(dB[x_pos] * scale_factor)
value = min(255, max(0, value))
dc1.SetPen(self.pens[value])
dc1.DrawRectangle(x_pos*p_width + d_max, 0, p_width, 1)
for x_pos in range(0 , d_max): # negative freqs
value = int(dB[x_pos+d_max] * scale_factor)
value = min(255, max(0, value))
dc1.SetPen(self.pens[value])
dc1.DrawRectangle(x_pos*p_width, 0, p_width, 1)
self.DoDrawing (None)
def on_average(self, evt):
# print "on_average"
self.fftsink.set_average(evt.IsChecked())
def on_right_click(self, event):
menu = self.popup_menu
for id, pred in self.checkmarks.items():
item = menu.FindItemById(id)
item.Check(pred())
self.PopupMenu(menu, event.GetPosition())
def build_popup_menu(self):
self.id_incr_ref_level = wx.NewId()
self.id_decr_ref_level = wx.NewId()
self.id_incr_y_per_div = wx.NewId()
self.id_decr_y_per_div = wx.NewId()
self.id_y_per_div_1 = wx.NewId()
self.id_y_per_div_2 = wx.NewId()
self.id_y_per_div_5 = wx.NewId()
self.id_y_per_div_10 = wx.NewId()
self.id_y_per_div_20 = wx.NewId()
self.id_average = wx.NewId()
self.Bind(wx.EVT_MENU, self.on_average, id=self.id_average)
#self.Bind(wx.EVT_MENU, self.on_incr_ref_level, id=self.id_incr_ref_level)
#self.Bind(wx.EVT_MENU, self.on_decr_ref_level, id=self.id_decr_ref_level)
#self.Bind(wx.EVT_MENU, self.on_incr_y_per_div, id=self.id_incr_y_per_div)
#self.Bind(wx.EVT_MENU, self.on_decr_y_per_div, id=self.id_decr_y_per_div)
#self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_1)
#self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_2)
#self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_5)
#self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_10)
#self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_20)
# make a menu
menu = wx.Menu()
self.popup_menu = menu
menu.AppendCheckItem(self.id_average, "Average")
# menu.Append(self.id_incr_ref_level, "Incr Ref Level")
# menu.Append(self.id_decr_ref_level, "Decr Ref Level")
# menu.Append(self.id_incr_y_per_div, "Incr dB/div")
# menu.Append(self.id_decr_y_per_div, "Decr dB/div")
# menu.AppendSeparator()
# we'd use RadioItems for these, but they're not supported on Mac
#menu.AppendCheckItem(self.id_y_per_div_1, "1 dB/div")
#menu.AppendCheckItem(self.id_y_per_div_2, "2 dB/div")
#menu.AppendCheckItem(self.id_y_per_div_5, "5 dB/div")
#menu.AppendCheckItem(self.id_y_per_div_10, "10 dB/div")
#menu.AppendCheckItem(self.id_y_per_div_20, "20 dB/div")
self.checkmarks = {
self.id_average : lambda : self.fftsink.average
#self.id_y_per_div_1 : lambda : self.fftsink.y_per_div == 1,
#self.id_y_per_div_2 : lambda : self.fftsink.y_per_div == 2,
#self.id_y_per_div_5 : lambda : self.fftsink.y_per_div == 5,
#self.id_y_per_div_10 : lambda : self.fftsink.y_per_div == 10,
#self.id_y_per_div_20 : lambda : self.fftsink.y_per_div == 20,
}
def next_up(v, seq):
"""
Return the first item in seq that is > v.
"""
for s in seq:
if s > v:
return s
return v
def next_down(v, seq):
"""
Return the last item in seq that is < v.
"""
rseq = list(seq[:])
rseq.reverse()
for s in rseq:
if s < v:
return s
return v
# ----------------------------------------------------------------
# Standalone test app
# ----------------------------------------------------------------
class test_top_block (stdgui2.std_top_block):
def __init__(self, frame, panel, vbox, argv):
stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)
fft_size = 512
# build our flow graph
input_rate = 20.000e3
# Generate a complex sinusoid
self.define_component("src1", gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000))
#src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
# We add these throttle blocks so that this demo doesn't
# suck down all the CPU available. Normally you wouldn't use these.
self.define_component("thr1", gr.throttle(gr.sizeof_gr_complex, input_rate))
sink1 = waterfall_sink_c (self, panel, title="Complex Data", fft_size=fft_size,
sample_rate=input_rate, baseband_freq=100e3)
self.define_component("sink1", sink1)
vbox.Add (sink1.win, 1, wx.EXPAND)
# Ultimately this will be
# self.connect("src1 thr1 sink1")
self.connect("src1", 0, "thr1", 0)
self.connect("thr1", 0, "sink1", 0)
# generate a real sinusoid
self.define_component("src2", gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000))
#src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
self.define_component("thr2", gr.throttle(gr.sizeof_float, input_rate))
sink2 = waterfall_sink_f (self, panel, title="Real Data", fft_size=fft_size,
sample_rate=input_rate, baseband_freq=100e3)
self.define_component("sink2", sink2)
vbox.Add (sink2.win, 1, wx.EXPAND)
# Ultimately this will be
# self.connect("src2 thr2 sink2")
self.connect("src2", 0, "thr2", 0)
self.connect("thr2", 0, "sink2", 0)
def main ():
app = stdgui2.stdapp (test_top_block,
"Waterfall Sink Test App")
app.MainLoop ()
if __name__ == '__main__':
main ()
|