1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
#
# Copyright 2008 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1`301, USA.
#
##################################################
# Imports
##################################################
import plotter
import common
import wx
import numpy
import math
import pubsub
from constants import *
from gnuradio import gr #for gr.prefs
import forms
##################################################
# Constants
##################################################
SLIDER_STEPS = 100
AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP = -3, 0
DEFAULT_FRAME_RATE = gr.prefs().get_long('wxgui', 'waterfall_rate', 30)
DEFAULT_WIN_SIZE = (600, 300)
DIV_LEVELS = (1, 2, 5, 10, 20)
MIN_DYNAMIC_RANGE, MAX_DYNAMIC_RANGE = 10, 200
DYNAMIC_RANGE_STEP = 10.
COLOR_MODES = (
('RGB1', 'rgb1'),
('RGB2', 'rgb2'),
('RGB3', 'rgb3'),
('Gray', 'gray'),
)
##################################################
# Waterfall window control panel
##################################################
class control_panel(wx.Panel):
"""
A control panel with wx widgits to control the plotter and fft block chain.
"""
def __init__(self, parent):
"""
Create a new control panel.
@param parent the wx parent window
"""
self.parent = parent
wx.Panel.__init__(self, parent, style=wx.SUNKEN_BORDER)
parent[SHOW_CONTROL_PANEL_KEY] = True
parent.subscribe(SHOW_CONTROL_PANEL_KEY, self.Show)
control_box = wx.BoxSizer(wx.VERTICAL)
control_box.AddStretchSpacer()
options_box = forms.static_box_sizer(
parent=self, sizer=control_box, label='Options',
bold=True, orient=wx.VERTICAL,
)
#average
forms.check_box(
sizer=options_box, parent=self, label='Average',
ps=parent, key=AVERAGE_KEY,
)
avg_alpha_text = forms.static_text(
sizer=options_box, parent=self, label='Avg Alpha',
converter=forms.float_converter(lambda x: '%.4f'%x),
ps=parent, key=AVG_ALPHA_KEY, width=50,
)
avg_alpha_slider = forms.log_slider(
sizer=options_box, parent=self,
min_exp=AVG_ALPHA_MIN_EXP,
max_exp=AVG_ALPHA_MAX_EXP,
num_steps=SLIDER_STEPS,
ps=parent, key=AVG_ALPHA_KEY,
)
for widget in (avg_alpha_text, avg_alpha_slider):
parent.subscribe(AVERAGE_KEY, widget.Enable)
widget.Enable(parent[AVERAGE_KEY])
#begin axes box
control_box.AddStretchSpacer()
axes_box = forms.static_box_sizer(
parent=self, sizer=control_box, label='Axes Options',
bold=True, orient=wx.VERTICAL,
)
#num lines buttons
forms.incr_decr_buttons(
parent=self, sizer=axes_box, label='Time Scale',
on_incr=self._on_incr_time_scale, on_decr=self._on_decr_time_scale,
)
#dyanmic range buttons
forms.incr_decr_buttons(
parent=self, sizer=axes_box, label='Dyn Range',
on_incr=self._on_incr_dynamic_range, on_decr=self._on_decr_dynamic_range,
)
#ref lvl buttons
forms.incr_decr_buttons(
parent=self, sizer=axes_box, label='Ref Level',
on_incr=self._on_incr_ref_level, on_decr=self._on_decr_ref_level,
)
#color mode
forms.drop_down(
parent=self, sizer=axes_box, width=100,
ps=parent, key=COLOR_MODE_KEY, label='Color',
choices=map(lambda x: x[1], COLOR_MODES),
labels=map(lambda x: x[0], COLOR_MODES),
)
#autoscale
forms.single_button(
parent=self, sizer=axes_box, label='Autoscale',
callback=self.parent.autoscale,
)
#clear
control_box.AddStretchSpacer()
forms.single_button(
parent=self, sizer=control_box, label='Clear',
callback=self._on_clear_button,
)
#run/stop
forms.toggle_button(
sizer=control_box, parent=self,
true_label='Stop', false_label='Run',
ps=parent, key=RUNNING_KEY,
)
#set sizer
self.SetSizerAndFit(control_box)
##################################################
# Event handlers
##################################################
def _on_clear_button(self, event):
self.parent[NUM_LINES_KEY] = self.parent[NUM_LINES_KEY]
def _on_incr_dynamic_range(self, event):
self.parent[DYNAMIC_RANGE_KEY] = min(MAX_DYNAMIC_RANGE, common.get_clean_incr(self.parent[DYNAMIC_RANGE_KEY]))
def _on_decr_dynamic_range(self, event):
self.parent[DYNAMIC_RANGE_KEY] = max(MIN_DYNAMIC_RANGE, common.get_clean_decr(self.parent[DYNAMIC_RANGE_KEY]))
def _on_incr_ref_level(self, event):
self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] + self.parent[DYNAMIC_RANGE_KEY]/DYNAMIC_RANGE_STEP
def _on_decr_ref_level(self, event):
self.parent[REF_LEVEL_KEY] = self.parent[REF_LEVEL_KEY] - self.parent[DYNAMIC_RANGE_KEY]/DYNAMIC_RANGE_STEP
def _on_incr_time_scale(self, event):
old_rate = self.parent[FRAME_RATE_KEY]
self.parent[FRAME_RATE_KEY] *= 0.75
if self.parent[FRAME_RATE_KEY] == old_rate:
self.parent[DECIMATION_KEY] += 1
def _on_decr_time_scale(self, event):
old_rate = self.parent[FRAME_RATE_KEY]
self.parent[FRAME_RATE_KEY] *= 1.25
if self.parent[FRAME_RATE_KEY] == old_rate:
self.parent[DECIMATION_KEY] -= 1
##################################################
# Waterfall window with plotter and control panel
##################################################
class waterfall_window(wx.Panel, pubsub.pubsub):
def __init__(
self,
parent,
controller,
size,
title,
real,
fft_size,
num_lines,
decimation_key,
baseband_freq,
sample_rate_key,
frame_rate_key,
dynamic_range,
ref_level,
average_key,
avg_alpha_key,
msg_key,
):
pubsub.pubsub.__init__(self)
#setup
self.samples = list()
self.real = real
self.fft_size = fft_size
#proxy the keys
self.proxy(MSG_KEY, controller, msg_key)
self.proxy(DECIMATION_KEY, controller, decimation_key)
self.proxy(FRAME_RATE_KEY, controller, frame_rate_key)
self.proxy(AVERAGE_KEY, controller, average_key)
self.proxy(AVG_ALPHA_KEY, controller, avg_alpha_key)
self.proxy(SAMPLE_RATE_KEY, controller, sample_rate_key)
#init panel and plot
wx.Panel.__init__(self, parent, style=wx.SIMPLE_BORDER)
self.plotter = plotter.waterfall_plotter(self)
self.plotter.SetSize(wx.Size(*size))
self.plotter.set_title(title)
self.plotter.enable_point_label(True)
self.plotter.enable_grid_lines(False)
#plotter listeners
self.subscribe(COLOR_MODE_KEY, self.plotter.set_color_mode)
self.subscribe(NUM_LINES_KEY, self.plotter.set_num_lines)
#initialize values
self[DYNAMIC_RANGE_KEY] = dynamic_range
self[NUM_LINES_KEY] = num_lines
self[Y_DIVS_KEY] = 8
self[X_DIVS_KEY] = 8 #approximate
self[REF_LEVEL_KEY] = ref_level
self[BASEBAND_FREQ_KEY] = baseband_freq
self[COLOR_MODE_KEY] = COLOR_MODES[0][1]
self[RUNNING_KEY] = True
#setup the box with plot and controls
self.control_panel = control_panel(self)
main_box = wx.BoxSizer(wx.HORIZONTAL)
main_box.Add(self.plotter, 1, wx.EXPAND)
main_box.Add(self.control_panel, 0, wx.EXPAND)
self.SetSizerAndFit(main_box)
#register events
self.subscribe(MSG_KEY, self.handle_msg)
for key in (
DECIMATION_KEY, SAMPLE_RATE_KEY, FRAME_RATE_KEY,
BASEBAND_FREQ_KEY, X_DIVS_KEY, Y_DIVS_KEY, NUM_LINES_KEY,
): self.subscribe(key, self.update_grid)
#initial update
self.update_grid()
def autoscale(self, *args):
"""
Autoscale the waterfall plot to the last frame.
Set the dynamic range and reference level.
Does not affect the current data in the waterfall.
"""
if not len(self.samples): return
min_level, max_level = common.get_min_max_fft(self.samples)
#set the range and level
self[DYNAMIC_RANGE_KEY] = common.get_clean_num(max_level - min_level)
self[REF_LEVEL_KEY] = DYNAMIC_RANGE_STEP*round(.5+max_level/DYNAMIC_RANGE_STEP)
def handle_msg(self, msg):
"""
Handle the message from the fft sink message queue.
If complex, reorder the fft samples so the negative bins come first.
If real, keep take only the positive bins.
Send the data to the plotter.
@param msg the fft array as a character array
"""
if not self[RUNNING_KEY]: return
#convert to floating point numbers
self.samples = samples = numpy.fromstring(msg, numpy.float32)[:self.fft_size] #only take first frame
num_samps = len(samples)
#reorder fft
if self.real: samples = samples[:(num_samps+1)/2]
else: samples = numpy.concatenate((samples[num_samps/2+1:], samples[:(num_samps+1)/2]))
#plot the fft
self.plotter.set_samples(
samples=samples,
minimum=self[REF_LEVEL_KEY] - self[DYNAMIC_RANGE_KEY],
maximum=self[REF_LEVEL_KEY],
)
#update the plotter
self.plotter.update()
def update_grid(self, *args):
"""
Update the plotter grid.
This update method is dependent on the variables below.
Determine the x and y axis grid parameters.
The x axis depends on sample rate, baseband freq, and x divs.
The y axis depends on y per div, y divs, and ref level.
"""
#grid parameters
sample_rate = self[SAMPLE_RATE_KEY]
frame_rate = self[FRAME_RATE_KEY]
baseband_freq = self[BASEBAND_FREQ_KEY]
num_lines = self[NUM_LINES_KEY]
y_divs = self[Y_DIVS_KEY]
x_divs = self[X_DIVS_KEY]
#determine best fitting x_per_div
if self.real: x_width = sample_rate/2.0
else: x_width = sample_rate/1.0
x_per_div = common.get_clean_num(x_width/x_divs)
#update the x grid
if self.real:
self.plotter.set_x_grid(
baseband_freq,
baseband_freq + sample_rate/2.0,
x_per_div, True,
)
else:
self.plotter.set_x_grid(
baseband_freq - sample_rate/2.0,
baseband_freq + sample_rate/2.0,
x_per_div, True,
)
#update x units
self.plotter.set_x_label('Frequency', 'Hz')
#update y grid
duration = float(num_lines)/frame_rate
y_per_div = common.get_clean_num(duration/y_divs)
self.plotter.set_y_grid(0, duration, y_per_div, True)
#update y units
self.plotter.set_y_label('Time', 's')
#update plotter
self.plotter.update()
|