1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
|
#!/usr/bin/env python
#
# Copyright 2003,2004,2005,2006,2007 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, gru, window
from gnuradio.wxgui import stdgui2
import wx
import plot
import numpy
import math
DIV_LEVELS = (1, 2, 5, 10, 20)
default_fftsink_size = (640,240)
default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)
class fft_sink_base(object):
def __init__(self, input_is_real=False, baseband_freq=0, y_per_div=10,
y_divs=8, ref_level=50,
sample_rate=1, fft_size=512,
fft_rate=default_fft_rate,
average=False, avg_alpha=None, title='', peak_hold=False,emulate_analog=False,analog_alpha=0.2):
# initialize common attributes
self.baseband_freq = baseband_freq
self.y_per_div=y_per_div
self.y_divs = y_divs
self.ref_level = ref_level
self.sample_rate = sample_rate
self.fft_size = fft_size
self.fft_rate = fft_rate
self.average = average
if avg_alpha is None:
self.avg_alpha = 2.0 / fft_rate
else:
self.avg_alpha = avg_alpha
self.emulate_analog = emulate_analog
self.analog_alpha = analog_alpha
self.title = title
self.peak_hold = peak_hold
self.input_is_real = input_is_real
self.msgq = gr.msg_queue(2) # queue that holds a maximum of 2 messages
def set_y_per_div(self, y_per_div):
self.y_per_div = y_per_div
def set_ref_level(self, ref_level):
self.ref_level = ref_level
def set_average(self, average):
self.average = average
if average:
self.avg.set_taps(self.avg_alpha)
else:
self.avg.set_taps(1.0)
self.win.peak_vals = None
def set_peak_hold(self, enable):
self.peak_hold = enable
self.win.set_peak_hold(enable)
def set_emulate_analog(self, enable):
self.emulate_analog = enable
self.win.set_emulate_analog(enable)
def set_analog_alpha(self, analog_alpha):
self.analog_alpha = analog_alpha
self.win.set_analog_alpha(analog_alpha)
def set_avg_alpha(self, avg_alpha):
self.avg_alpha = avg_alpha
def set_baseband_freq(self, baseband_freq):
self.baseband_freq = baseband_freq
def set_sample_rate(self, sample_rate):
self.sample_rate = sample_rate
self._set_n()
def _set_n(self):
self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
class fft_sink_f(gr.hier_block2, fft_sink_base):
def __init__(self, parent, baseband_freq=0, ref_scale=2.0,
y_per_div=10, y_divs=8, ref_level=50, sample_rate=1, fft_size=512,
fft_rate=default_fft_rate, average=False, avg_alpha=None,
title='', size=default_fftsink_size, peak_hold=False, emulate_analog=False,analog_alpha=0.2):
gr.hier_block2.__init__(self, "fft_sink_f",
gr.io_signature(1, 1, gr.sizeof_float),
gr.io_signature(0,0,0))
fft_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq,
y_per_div=y_per_div, y_divs=y_divs, ref_level=ref_level,
sample_rate=sample_rate, fft_size=fft_size,
fft_rate=fft_rate,
average=average, avg_alpha=avg_alpha, title=title,
peak_hold=peak_hold,emulate_analog=emulate_analog,analog_alpha=analog_alpha)
self.s2p = gr.stream_to_vector(gr.sizeof_float, self.fft_size)
self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size,
max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
mywindow = window.blackmanharris(self.fft_size)
self.fft = gr.fft_vfc(self.fft_size, True, mywindow)
power = 0
for tap in mywindow:
power += tap*tap
self.c2mag = gr.complex_to_mag(self.fft_size)
self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
# FIXME We need to add 3dB to all bins but the DC bin
self.log = gr.nlog10_ff(20, self.fft_size,
-10*math.log10(self.fft_size) # Adjust for number of bins
-10*math.log10(power/self.fft_size) # Adjust for windowing loss
-20*math.log10(ref_scale/2)) # Adjust for reference scale
self.sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
self.connect(self, self.s2p, self.one_in_n, self.fft, self.c2mag, self.avg, self.log, self.sink)
self.win = fft_window(self, parent, size=size)
self.set_average(self.average)
self.set_peak_hold(self.peak_hold)
self.set_emulate_analog(self.emulate_analog)
self.set_analog_alpha(self.analog_alpha)
class fft_sink_c(gr.hier_block2, fft_sink_base):
def __init__(self, parent, baseband_freq=0, ref_scale=2.0,
y_per_div=10, y_divs=8, ref_level=50, sample_rate=1, fft_size=512,
fft_rate=default_fft_rate, average=False, avg_alpha=None,
title='', size=default_fftsink_size, peak_hold=False, emulate_analog=False,analog_alpha=0.2):
gr.hier_block2.__init__(self, "fft_sink_c",
gr.io_signature(1, 1, gr.sizeof_gr_complex),
gr.io_signature(0,0,0))
fft_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq,
y_per_div=y_per_div, y_divs=y_divs, ref_level=ref_level,
sample_rate=sample_rate, fft_size=fft_size,
fft_rate=fft_rate,
average=average, avg_alpha=avg_alpha, title=title,
peak_hold=peak_hold, emulate_analog=emulate_analog,analog_alpha=analog_alpha)
self.s2p = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size,
max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
mywindow = window.blackmanharris(self.fft_size)
self.fft = gr.fft_vcc(self.fft_size, True, mywindow)
power = 0
for tap in mywindow:
power += tap*tap
self.c2mag = gr.complex_to_mag(self.fft_size)
self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
# FIXME We need to add 3dB to all bins but the DC bin
self.log = gr.nlog10_ff(20, self.fft_size,
-10*math.log10(self.fft_size) # Adjust for number of bins
-10*math.log10(power/self.fft_size) # Adjust for windowing loss
-20*math.log10(ref_scale/2)) # Adjust for reference scale
self.sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
self.connect(self, self.s2p, self.one_in_n, self.fft, self.c2mag, self.avg, self.log, self.sink)
self.win = fft_window(self, parent, size=size)
self.set_average(self.average)
self.set_emulate_analog(self.emulate_analog)
self.set_analog_alpha(self.analog_alpha)
self.set_peak_hold(self.peak_hold)
# ------------------------------------------------------------------------
myDATA_EVENT = wx.NewEventType()
EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
class DataEvent(wx.PyEvent):
def __init__(self, data):
wx.PyEvent.__init__(self)
self.SetEventType (myDATA_EVENT)
self.data = data
def Clone (self):
self.__class__ (self.GetId())
class input_watcher (gru.msgq_runner):
def __init__ (self, msgq, fft_size, event_receiver, **kwds):
self.fft_size = fft_size
self.event_receiver = event_receiver
gru.msgq_runner.__init__(self, msgq, self.handle_msg)
def handle_msg(self, msg):
itemsize = int(msg.arg1())
nitems = int(msg.arg2())
s = msg.to_string() # get the body of the msg as a string
# There may be more than one FFT frame in the message.
# If so, we take only the last one
if nitems > 1:
start = itemsize * (nitems - 1)
s = s[start:start+itemsize]
complex_data = numpy.fromstring (s, numpy.float32)
de = DataEvent (complex_data)
wx.PostEvent (self.event_receiver, de)
del de
class control_panel(wx.Panel):
class LabelText(wx.StaticText):
def __init__(self, window, label):
wx.StaticText.__init__(self, window, -1, label)
font = self.GetFont()
font.SetWeight(wx.FONTWEIGHT_BOLD)
font.SetUnderlined(True)
self.SetFont(font)
def __init__(self, parent):
self.parent = parent
wx.Panel.__init__(self, parent, -1, style=wx.SIMPLE_BORDER)
control_box = wx.BoxSizer(wx.VERTICAL)
#checkboxes for average and peak hold
control_box.AddStretchSpacer()
control_box.Add(self.LabelText(self, 'Options'), 0, wx.ALIGN_CENTER)
self.average_check_box = wx.CheckBox(parent=self, style=wx.CHK_2STATE, label="Average")
self.average_check_box.Bind(wx.EVT_CHECKBOX, parent.on_average)
control_box.Add(self.average_check_box, 0, wx.EXPAND)
self.emulate_analog_check_box = wx.CheckBox(parent=self, style=wx.CHK_2STATE, label="Emulate Analog")
self.emulate_analog_check_box.Bind(wx.EVT_CHECKBOX, parent.on_emulate_analog)
control_box.Add(self.emulate_analog_check_box, 0, wx.EXPAND)
self.peak_hold_check_box = wx.CheckBox(parent=self, style=wx.CHK_2STATE, label="Peak Hold")
self.peak_hold_check_box.Bind(wx.EVT_CHECKBOX, parent.on_peak_hold)
control_box.Add(self.peak_hold_check_box, 0, wx.EXPAND)
#radio buttons for div size
control_box.AddStretchSpacer()
control_box.Add(self.LabelText(self, 'Set dB/div'), 0, wx.ALIGN_CENTER)
radio_box = wx.BoxSizer(wx.VERTICAL)
self.radio_buttons = list()
for y_per_div in DIV_LEVELS:
radio_button = wx.RadioButton(self, -1, "%d dB/div"%y_per_div)
radio_button.Bind(wx.EVT_RADIOBUTTON, self.on_radio_button_change)
self.radio_buttons.append(radio_button)
radio_box.Add(radio_button, 0, wx.ALIGN_LEFT)
control_box.Add(radio_box, 0, wx.EXPAND)
#ref lvl buttons
control_box.AddStretchSpacer()
control_box.Add(self.LabelText(self, 'Adj Ref Lvl'), 0, wx.ALIGN_CENTER)
control_box.AddSpacer(2)
button_box = wx.BoxSizer(wx.HORIZONTAL)
self.ref_plus_button = wx.Button(self, -1, '+', style=wx.BU_EXACTFIT)
self.ref_plus_button.Bind(wx.EVT_BUTTON, parent.on_incr_ref_level)
button_box.Add(self.ref_plus_button, 0, wx.ALIGN_CENTER)
self.ref_minus_button = wx.Button(self, -1, ' - ', style=wx.BU_EXACTFIT)
self.ref_minus_button.Bind(wx.EVT_BUTTON, parent.on_decr_ref_level)
button_box.Add(self.ref_minus_button, 0, wx.ALIGN_CENTER)
control_box.Add(button_box, 0, wx.ALIGN_CENTER)
control_box.AddStretchSpacer()
#set sizer
self.SetSizerAndFit(control_box)
#update
self.update()
def update(self):
"""
Read the state of the fft plot settings and update the control panel.
"""
#update checkboxes
self.average_check_box.SetValue(self.parent.fftsink.average)
self.emulate_analog_check_box.SetValue(self.parent.fftsink.emulate_analog)
self.peak_hold_check_box.SetValue(self.parent.fftsink.peak_hold)
#update radio buttons
try:
index = list(DIV_LEVELS).index(self.parent.fftsink.y_per_div)
self.radio_buttons[index].SetValue(True)
except: pass
def on_radio_button_change(self, evt):
selected_radio_button = filter(lambda rb: rb.GetValue(), self.radio_buttons)[0]
index = self.radio_buttons.index(selected_radio_button)
self.parent.fftsink.set_y_per_div(DIV_LEVELS[index])
class fft_window (wx.Panel):
def __init__ (self, fftsink, parent, id = -1,
pos = wx.DefaultPosition, size = wx.DefaultSize,
style = wx.DEFAULT_FRAME_STYLE, name = ""):
self.fftsink = fftsink
#init panel and plot
wx.Panel.__init__(self, parent, -1)
self.plot = plot.PlotCanvas(self, id, pos, size, style, name)
#setup the box with plot and controls
self.control_panel = control_panel(self)
main_box = wx.BoxSizer (wx.HORIZONTAL)
main_box.Add (self.plot, 1, wx.EXPAND)
main_box.Add (self.control_panel, 0, wx.EXPAND)
self.SetSizerAndFit(main_box)
self.peak_hold = False
self.peak_vals = None
self.emulate_analog=False
self.analog_alpha=0.2
self.plot.SetEnableGrid (True)
# self.SetEnableZoom (True)
# self.SetBackgroundColour ('black')
self.build_popup_menu()
self.set_baseband_freq(self.fftsink.baseband_freq)
EVT_DATA_EVENT (self, self.set_data)
wx.EVT_CLOSE (self, self.on_close_window)
self.plot.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
self.plot.Bind(wx.EVT_MOTION, self.evt_motion)
self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self)
def set_scale(self, freq):
x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq))
if x >= 1e9:
self._scale_factor = 1e-9
self._units = "GHz"
self._format = "%3.6f"
elif x >= 1e6:
self._scale_factor = 1e-6
self._units = "MHz"
self._format = "%3.3f"
else:
self._scale_factor = 1e-3
self._units = "kHz"
self._format = "%3.3f"
def set_baseband_freq(self, baseband_freq):
if self.peak_hold:
self.peak_vals = None
self.set_scale(baseband_freq)
self.fftsink.set_baseband_freq(baseband_freq)
def on_close_window (self, event):
print "fft_window:on_close_window"
self.keep_running = False
def set_data (self, evt):
dB = evt.data
L = len (dB)
if self.peak_hold:
if self.peak_vals is None:
self.peak_vals = dB
else:
self.peak_vals = numpy.maximum(dB, self.peak_vals)
if self.fftsink.input_is_real: # only plot 1/2 the points
x_vals = ((numpy.arange (L/2) * (self.fftsink.sample_rate
* self._scale_factor / L))
+ self.fftsink.baseband_freq * self._scale_factor)
self._points = numpy.zeros((len(x_vals), 2), numpy.float64)
self._points[:,0] = x_vals
self._points[:,1] = dB[0:L/2]
if self.peak_hold:
self._peak_points = numpy.zeros((len(x_vals), 2), numpy.float64)
self._peak_points[:,0] = x_vals
self._peak_points[:,1] = self.peak_vals[0:L/2]
else:
# the "negative freqs" are in the second half of the array
x_vals = ((numpy.arange (-L/2, L/2)
* (self.fftsink.sample_rate * self._scale_factor / L))
+ self.fftsink.baseband_freq * self._scale_factor)
self._points = numpy.zeros((len(x_vals), 2), numpy.float64)
self._points[:,0] = x_vals
self._points[:,1] = numpy.concatenate ((dB[L/2:], dB[0:L/2]))
if self.peak_hold:
self._peak_points = numpy.zeros((len(x_vals), 2), numpy.float64)
self._peak_points[:,0] = x_vals
self._peak_points[:,1] = numpy.concatenate ((self.peak_vals[L/2:], self.peak_vals[0:L/2]))
lines = [plot.PolyLine (self._points, colour='BLUE'),]
if self.peak_hold:
lines.append(plot.PolyLine (self._peak_points, colour='GREEN'))
graphics = plot.PlotGraphics (lines,
title=self.fftsink.title,
xLabel = self._units, yLabel = "dB")
x_range = x_vals[0], x_vals[-1]
ymax = self.fftsink.ref_level
ymin = self.fftsink.ref_level - self.fftsink.y_per_div * self.fftsink.y_divs
y_range = ymin, ymax
self.plot.Draw (graphics, xAxis=x_range, yAxis=y_range, step=self.fftsink.y_per_div)
def set_emulate_analog(self, enable):
self.emulate_analog = enable
self.plot.set_emulate_analog( enable)
def set_analog_alpha(self, analog_alpha):
self.analog_alpha = analog_alpha
self.plot.set_analog_alpha(analog_alpha)
def set_peak_hold(self, enable):
self.peak_hold = enable
self.peak_vals = None
def on_average(self, evt):
# print "on_average"
self.fftsink.set_average(evt.IsChecked())
self.control_panel.update()
def on_emulate_analog(self, evt):
# print "on_analog"
self.fftsink.set_emulate_analog(evt.IsChecked())
self.control_panel.update()
def on_peak_hold(self, evt):
# print "on_peak_hold"
self.fftsink.set_peak_hold(evt.IsChecked())
self.control_panel.update()
def on_incr_ref_level(self, evt):
# print "on_incr_ref_level"
self.fftsink.set_ref_level(self.fftsink.ref_level
+ self.fftsink.y_per_div)
def on_decr_ref_level(self, evt):
# print "on_decr_ref_level"
self.fftsink.set_ref_level(self.fftsink.ref_level
- self.fftsink.y_per_div)
def on_incr_y_per_div(self, evt):
# print "on_incr_y_per_div"
self.fftsink.set_y_per_div(next_up(self.fftsink.y_per_div, DIV_LEVELS))
self.control_panel.update()
def on_decr_y_per_div(self, evt):
# print "on_decr_y_per_div"
self.fftsink.set_y_per_div(next_down(self.fftsink.y_per_div, DIV_LEVELS))
self.control_panel.update()
def on_y_per_div(self, evt):
# print "on_y_per_div"
Id = evt.GetId()
if Id == self.id_y_per_div_1:
self.fftsink.set_y_per_div(1)
elif Id == self.id_y_per_div_2:
self.fftsink.set_y_per_div(2)
elif Id == self.id_y_per_div_5:
self.fftsink.set_y_per_div(5)
elif Id == self.id_y_per_div_10:
self.fftsink.set_y_per_div(10)
elif Id == self.id_y_per_div_20:
self.fftsink.set_y_per_div(20)
self.control_panel.update()
def on_right_click(self, event):
menu = self.popup_menu
for id, pred in self.checkmarks.items():
item = menu.FindItemById(id)
item.Check(pred())
self.plot.PopupMenu(menu, event.GetPosition())
def evt_motion(self, event):
if not hasattr(self, "_points"):
return # Got here before first window data update
# Clip to plotted values
(ux, uy) = self.plot.GetXY(event) # Scaled position
x_vals = numpy.array(self._points[:,0])
if ux < x_vals[0] or ux > x_vals[-1]:
tip = self.GetToolTip()
if tip:
tip.Enable(False)
return
# Get nearest X value (is there a better way)?
ind = numpy.argmin(numpy.abs(x_vals-ux))
x_val = x_vals[ind]
db_val = self._points[ind, 1]
text = (self._format+" %s dB=%3.3f") % (x_val, self._units, db_val)
# Display the tooltip
tip = wx.ToolTip(text)
tip.Enable(True)
tip.SetDelay(0)
self.SetToolTip(tip)
def build_popup_menu(self):
self.id_incr_ref_level = wx.NewId()
self.id_decr_ref_level = wx.NewId()
self.id_incr_y_per_div = wx.NewId()
self.id_decr_y_per_div = wx.NewId()
self.id_y_per_div_1 = wx.NewId()
self.id_y_per_div_2 = wx.NewId()
self.id_y_per_div_5 = wx.NewId()
self.id_y_per_div_10 = wx.NewId()
self.id_y_per_div_20 = wx.NewId()
self.id_average = wx.NewId()
self.id_emulate_analog = wx.NewId()
self.id_peak_hold = wx.NewId()
self.plot.Bind(wx.EVT_MENU, self.on_average, id=self.id_average)
self.plot.Bind(wx.EVT_MENU, self.on_emulate_analog, id=self.id_emulate_analog)
self.plot.Bind(wx.EVT_MENU, self.on_peak_hold, id=self.id_peak_hold)
self.plot.Bind(wx.EVT_MENU, self.on_incr_ref_level, id=self.id_incr_ref_level)
self.plot.Bind(wx.EVT_MENU, self.on_decr_ref_level, id=self.id_decr_ref_level)
self.plot.Bind(wx.EVT_MENU, self.on_incr_y_per_div, id=self.id_incr_y_per_div)
self.plot.Bind(wx.EVT_MENU, self.on_decr_y_per_div, id=self.id_decr_y_per_div)
self.plot.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_1)
self.plot.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_2)
self.plot.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_5)
self.plot.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_10)
self.plot.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_20)
# make a menu
menu = wx.Menu()
self.popup_menu = menu
menu.AppendCheckItem(self.id_average, "Average")
menu.AppendCheckItem(self.id_emulate_analog, "Emulate Analog")
menu.AppendCheckItem(self.id_peak_hold, "Peak Hold")
menu.Append(self.id_incr_ref_level, "Incr Ref Level")
menu.Append(self.id_decr_ref_level, "Decr Ref Level")
# menu.Append(self.id_incr_y_per_div, "Incr dB/div")
# menu.Append(self.id_decr_y_per_div, "Decr dB/div")
menu.AppendSeparator()
# we'd use RadioItems for these, but they're not supported on Mac
menu.AppendCheckItem(self.id_y_per_div_1, "1 dB/div")
menu.AppendCheckItem(self.id_y_per_div_2, "2 dB/div")
menu.AppendCheckItem(self.id_y_per_div_5, "5 dB/div")
menu.AppendCheckItem(self.id_y_per_div_10, "10 dB/div")
menu.AppendCheckItem(self.id_y_per_div_20, "20 dB/div")
self.checkmarks = {
self.id_average : lambda : self.fftsink.average,
self.id_emulate_analog : lambda : self.fftsink.emulate_analog,
self.id_peak_hold : lambda : self.fftsink.peak_hold,
self.id_y_per_div_1 : lambda : self.fftsink.y_per_div == 1,
self.id_y_per_div_2 : lambda : self.fftsink.y_per_div == 2,
self.id_y_per_div_5 : lambda : self.fftsink.y_per_div == 5,
self.id_y_per_div_10 : lambda : self.fftsink.y_per_div == 10,
self.id_y_per_div_20 : lambda : self.fftsink.y_per_div == 20,
}
def next_up(v, seq):
"""
Return the first item in seq that is > v.
"""
for s in seq:
if s > v:
return s
return v
def next_down(v, seq):
"""
Return the last item in seq that is < v.
"""
rseq = list(seq[:])
rseq.reverse()
for s in rseq:
if s < v:
return s
return v
# ----------------------------------------------------------------
# Standalone test app
# ----------------------------------------------------------------
class test_app_block (stdgui2.std_top_block):
def __init__(self, frame, panel, vbox, argv):
stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)
fft_size = 256
# build our flow graph
input_rate = 100*20.48e3
# Generate a complex sinusoid
#src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 100*2e3, 1)
src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 100*5.75e3, 1)
# We add these throttle blocks so that this demo doesn't
# suck down all the CPU available. Normally you wouldn't use these.
thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate)
sink1 = fft_sink_c (panel, title="Complex Data", fft_size=fft_size,
sample_rate=input_rate, baseband_freq=100e3,
ref_level=0, y_per_div=20, y_divs=10)
vbox.Add (sink1.win, 1, wx.EXPAND)
self.connect(src1, thr1, sink1)
#src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 100*2e3, 1)
src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 100*5.75e3, 1)
thr2 = gr.throttle(gr.sizeof_float, input_rate)
sink2 = fft_sink_f (panel, title="Real Data", fft_size=fft_size*2,
sample_rate=input_rate, baseband_freq=100e3,
ref_level=0, y_per_div=20, y_divs=10)
vbox.Add (sink2.win, 1, wx.EXPAND)
self.connect(src2, thr2, sink2)
def main ():
app = stdgui2.stdapp (test_app_block, "FFT Sink Test App")
app.MainLoop ()
if __name__ == '__main__':
main ()
|