1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
#
# Copyright 2008 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
##################################################
# Imports
##################################################
import plotter
import common
import wx
import numpy
import math
import pubsub
from constants import *
##################################################
# Constants
##################################################
SLIDER_STEPS = 100
AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP = -3, 0
DEFAULT_WIN_SIZE = (600, 300)
DEFAULT_FRAME_RATE = 30
DIV_LEVELS = (1, 2, 5, 10, 20)
FFT_PLOT_COLOR_SPEC = (0, 0, 1)
PEAK_VALS_COLOR_SPEC = (0, 1, 0)
NO_PEAK_VALS = list()
##################################################
# FFT window control panel
##################################################
class control_panel(wx.Panel):
"""!
A control panel with wx widgits to control the plotter and fft block chain.
"""
def __init__(self, parent):
"""!
Create a new control panel.
@param parent the wx parent window
"""
self.parent = parent
wx.Panel.__init__(self, parent, -1, style=wx.SUNKEN_BORDER)
control_box = wx.BoxSizer(wx.VERTICAL)
#checkboxes for average and peak hold
control_box.AddStretchSpacer()
control_box.Add(common.LabelText(self, 'Options'), 0, wx.ALIGN_CENTER)
self.average_check_box = common.CheckBoxController(self, 'Average', parent.ext_controller, parent.average_key)
control_box.Add(self.average_check_box, 0, wx.EXPAND)
self.peak_hold_check_box = common.CheckBoxController(self, 'Peak Hold', parent, PEAK_HOLD_KEY)
control_box.Add(self.peak_hold_check_box, 0, wx.EXPAND)
control_box.AddSpacer(2)
self.avg_alpha_slider = common.LogSliderController(
self, 'Avg Alpha',
AVG_ALPHA_MIN_EXP, AVG_ALPHA_MAX_EXP, SLIDER_STEPS,
parent.ext_controller, parent.avg_alpha_key,
formatter=lambda x: ': %.4f'%x,
)
parent.ext_controller.subscribe(parent.average_key, self.avg_alpha_slider.Enable)
control_box.Add(self.avg_alpha_slider, 0, wx.EXPAND)
#radio buttons for div size
control_box.AddStretchSpacer()
control_box.Add(common.LabelText(self, 'Set dB/div'), 0, wx.ALIGN_CENTER)
radio_box = wx.BoxSizer(wx.VERTICAL)
self.radio_buttons = list()
for y_per_div in DIV_LEVELS:
radio_button = wx.RadioButton(self, -1, "%d dB/div"%y_per_div)
radio_button.Bind(wx.EVT_RADIOBUTTON, self._on_y_per_div)
self.radio_buttons.append(radio_button)
radio_box.Add(radio_button, 0, wx.ALIGN_LEFT)
parent.subscribe(Y_PER_DIV_KEY, self._on_set_y_per_div)
control_box.Add(radio_box, 0, wx.EXPAND)
#ref lvl buttons
control_box.AddStretchSpacer()
control_box.Add(common.LabelText(self, 'Set Ref Level'), 0, wx.ALIGN_CENTER)
control_box.AddSpacer(2)
self._ref_lvl_buttons = common.IncrDecrButtons(self, self._on_incr_ref_level, self._on_decr_ref_level)
control_box.Add(self._ref_lvl_buttons, 0, wx.ALIGN_CENTER)
#autoscale
control_box.AddStretchSpacer()
self.autoscale_button = wx.Button(self, label='Autoscale', style=wx.BU_EXACTFIT)
self.autoscale_button.Bind(wx.EVT_BUTTON, self.parent.autoscale)
control_box.Add(self.autoscale_button, 0, wx.EXPAND)
#run/stop
self.run_button = common.ToggleButtonController(self, parent, RUNNING_KEY, 'Stop', 'Run')
control_box.Add(self.run_button, 0, wx.EXPAND)
#set sizer
self.SetSizerAndFit(control_box)
##################################################
# Event handlers
##################################################
def _on_set_y_per_div(self, y_per_div):
try:
index = list(DIV_LEVELS).index(y_per_div)
self.radio_buttons[index].SetValue(True)
except: pass
def _on_y_per_div(self, event):
selected_radio_button = filter(lambda rb: rb.GetValue(), self.radio_buttons)[0]
index = self.radio_buttons.index(selected_radio_button)
self.parent[Y_PER_DIV_KEY] = DIV_LEVELS[index]
def _on_incr_ref_level(self, event):
self.parent.set_ref_level(
self.parent[REF_LEVEL_KEY] + self.parent[Y_PER_DIV_KEY])
def _on_decr_ref_level(self, event):
self.parent.set_ref_level(
self.parent[REF_LEVEL_KEY] - self.parent[Y_PER_DIV_KEY])
##################################################
# FFT window with plotter and control panel
##################################################
class fft_window(wx.Panel, pubsub.pubsub, common.prop_setter):
def __init__(
self,
parent,
controller,
size,
title,
real,
fft_size,
baseband_freq,
sample_rate_key,
y_per_div,
y_divs,
ref_level,
average_key,
avg_alpha_key,
peak_hold,
msg_key,
):
pubsub.pubsub.__init__(self)
#ensure y_per_div
if y_per_div not in DIV_LEVELS: y_per_div = DIV_LEVELS[0]
#setup
self.ext_controller = controller
self.real = real
self.fft_size = fft_size
self.sample_rate_key = sample_rate_key
self.average_key = average_key
self.avg_alpha_key = avg_alpha_key
self._reset_peak_vals()
#init panel and plot
wx.Panel.__init__(self, parent, -1, style=wx.SIMPLE_BORDER)
self.plotter = plotter.channel_plotter(self)
self.plotter.SetSize(wx.Size(*size))
self.plotter.set_title(title)
self.plotter.enable_point_label(True)
#setup the box with plot and controls
self.control_panel = control_panel(self)
main_box = wx.BoxSizer(wx.HORIZONTAL)
main_box.Add(self.plotter, 1, wx.EXPAND)
main_box.Add(self.control_panel, 0, wx.EXPAND)
self.SetSizerAndFit(main_box)
#initial setup
self.ext_controller[self.average_key] = self.ext_controller[self.average_key]
self.ext_controller[self.avg_alpha_key] = self.ext_controller[self.avg_alpha_key]
self._register_set_prop(self, PEAK_HOLD_KEY, peak_hold)
self._register_set_prop(self, Y_PER_DIV_KEY, y_per_div)
self._register_set_prop(self, Y_DIVS_KEY, y_divs)
self._register_set_prop(self, X_DIVS_KEY, 8) #approximate
self._register_set_prop(self, REF_LEVEL_KEY, ref_level)
self._register_set_prop(self, BASEBAND_FREQ_KEY, baseband_freq)
self._register_set_prop(self, RUNNING_KEY, True)
#register events
self.subscribe(PEAK_HOLD_KEY, self.plotter.enable_legend)
self.ext_controller.subscribe(AVERAGE_KEY, lambda x: self._reset_peak_vals())
self.ext_controller.subscribe(msg_key, self.handle_msg)
self.ext_controller.subscribe(self.sample_rate_key, self.update_grid)
for key in (
BASEBAND_FREQ_KEY,
Y_PER_DIV_KEY, X_DIVS_KEY,
Y_DIVS_KEY, REF_LEVEL_KEY,
): self.subscribe(key, self.update_grid)
#initial update
self.plotter.enable_legend(self[PEAK_HOLD_KEY])
self.update_grid()
def autoscale(self, *args):
"""!
Autoscale the fft plot to the last frame.
Set the dynamic range and reference level.
"""
#get the peak level (max of the samples)
peak_level = numpy.max(self.samples)
#get the noise floor (averge the smallest samples)
noise_floor = numpy.average(numpy.sort(self.samples)[:len(self.samples)/4])
#padding
noise_floor -= abs(noise_floor)*.5
peak_level += abs(peak_level)*.1
#set the reference level to a multiple of y divs
self.set_ref_level(self[Y_DIVS_KEY]*math.ceil(peak_level/self[Y_DIVS_KEY]))
#set the range to a clean number of the dynamic range
self.set_y_per_div(common.get_clean_num((peak_level - noise_floor)/self[Y_DIVS_KEY]))
def _reset_peak_vals(self): self.peak_vals = NO_PEAK_VALS
def handle_msg(self, msg):
"""!
Handle the message from the fft sink message queue.
If complex, reorder the fft samples so the negative bins come first.
If real, keep take only the positive bins.
Plot the samples onto the grid as channel 1.
If peak hold is enabled, plot peak vals as channel 2.
@param msg the fft array as a character array
"""
if not self[RUNNING_KEY]: return
#convert to floating point numbers
samples = numpy.fromstring(msg, numpy.float32)[:self.fft_size] #only take first frame
num_samps = len(samples)
#reorder fft
if self.real: samples = samples[:num_samps/2]
else: samples = numpy.concatenate((samples[num_samps/2:], samples[:num_samps/2]))
self.samples = samples
#peak hold calculation
if self[PEAK_HOLD_KEY]:
if len(self.peak_vals) != len(samples): self.peak_vals = samples
self.peak_vals = numpy.maximum(samples, self.peak_vals)
else: self._reset_peak_vals()
#plot the fft
self.plotter.set_waveform(
channel='FFT',
samples=samples,
color_spec=FFT_PLOT_COLOR_SPEC,
)
#plot the peak hold
self.plotter.set_waveform(
channel='Peak',
samples=self.peak_vals,
color_spec=PEAK_VALS_COLOR_SPEC,
)
#update the plotter
self.plotter.update()
def update_grid(self, *args):
"""!
Update the plotter grid.
This update method is dependent on the variables below.
Determine the x and y axis grid parameters.
The x axis depends on sample rate, baseband freq, and x divs.
The y axis depends on y per div, y divs, and ref level.
"""
#grid parameters
sample_rate = self.ext_controller[self.sample_rate_key]
baseband_freq = self[BASEBAND_FREQ_KEY]
y_per_div = self[Y_PER_DIV_KEY]
y_divs = self[Y_DIVS_KEY]
x_divs = self[X_DIVS_KEY]
ref_level = self[REF_LEVEL_KEY]
#determine best fitting x_per_div
if self.real: x_width = sample_rate/2.0
else: x_width = sample_rate/1.0
x_per_div = common.get_clean_num(x_width/x_divs)
coeff, exp, prefix = common.get_si_components(abs(baseband_freq) + abs(sample_rate/2.0))
#update the x grid
if self.real:
self.plotter.set_x_grid(
baseband_freq,
baseband_freq + sample_rate/2.0,
x_per_div,
10**(-exp),
)
else:
self.plotter.set_x_grid(
baseband_freq - sample_rate/2.0,
baseband_freq + sample_rate/2.0,
x_per_div,
10**(-exp),
)
#update x units
self.plotter.set_x_label('Frequency', prefix+'Hz')
#update y grid
self.plotter.set_y_grid(ref_level-y_per_div*y_divs, ref_level, y_per_div)
#update y units
self.plotter.set_y_label('Amplitude', 'dB')
#update plotter
self.plotter.update()
|