1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header$ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
*/
/* 4.2.13 */
static void Weighting_filter P2((e, x),
register word * e, /* signal [-5..0.39.44] IN */
word * x /* signal [0..39] OUT */
)
/*
* The coefficients of the weighting filter are stored in a table
* (see table 4.4). The following scaling is used:
*
* H[0..10] = integer( real_H[ 0..10] * 8192 );
*/
{
/* word wt[ 50 ]; */
register longword L_result;
register int k /* , i */ ;
/* Initialization of a temporary working array wt[0...49]
*/
/* for (k = 0; k <= 4; k++) wt[k] = 0;
* for (k = 5; k <= 44; k++) wt[k] = *e++;
* for (k = 45; k <= 49; k++) wt[k] = 0;
*
* (e[-5..-1] and e[40..44] are allocated by the caller,
* are initially zero and are not written anywhere.)
*/
e -= 5;
/* Compute the signal x[0..39]
*/
for (k = 0; k <= 39; k++) {
L_result = 8192 >> 1;
/* for (i = 0; i <= 10; i++) {
* L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
* L_result = GSM_L_ADD( L_result, L_temp );
* }
*/
#undef STEP
#define STEP( i, H ) (e[ k + i ] * (longword)H)
/* Every one of these multiplications is done twice --
* but I don't see an elegant way to optimize this.
* Do you?
*/
#ifdef STUPID_COMPILER
L_result += STEP( 0, -134 ) ;
L_result += STEP( 1, -374 ) ;
/* + STEP( 2, 0 ) */
L_result += STEP( 3, 2054 ) ;
L_result += STEP( 4, 5741 ) ;
L_result += STEP( 5, 8192 ) ;
L_result += STEP( 6, 5741 ) ;
L_result += STEP( 7, 2054 ) ;
/* + STEP( 8, 0 ) */
L_result += STEP( 9, -374 ) ;
L_result += STEP( 10, -134 ) ;
#else
L_result +=
STEP( 0, -134 )
+ STEP( 1, -374 )
/* + STEP( 2, 0 ) */
+ STEP( 3, 2054 )
+ STEP( 4, 5741 )
+ STEP( 5, 8192 )
+ STEP( 6, 5741 )
+ STEP( 7, 2054 )
/* + STEP( 8, 0 ) */
+ STEP( 9, -374 )
+ STEP(10, -134 )
;
#endif
/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
*
* x[k] = SASR( L_result, 16 );
*/
/* 2 adds vs. >>16 => 14, minus one shift to compensate for
* those we lost when replacing L_MULT by '*'.
*/
L_result = SASR( L_result, 13 );
x[k] = ( L_result < MIN_WORD ? MIN_WORD
: (L_result > MAX_WORD ? MAX_WORD : L_result ));
}
}
/* 4.2.14 */
static void RPE_grid_selection P3((x,xM,Mc_out),
word * x, /* [0..39] IN */
word * xM, /* [0..12] OUT */
word * Mc_out /* OUT */
)
/*
* The signal x[0..39] is used to select the RPE grid which is
* represented by Mc.
*/
{
/* register word temp1; */
register int /* m, */ i;
register longword L_result, L_temp;
longword EM; /* xxx should be L_EM? */
word Mc;
longword L_common_0_3;
EM = 0;
Mc = 0;
/* for (m = 0; m <= 3; m++) {
* L_result = 0;
*
*
* for (i = 0; i <= 12; i++) {
*
* temp1 = SASR( x[m + 3*i], 2 );
*
* assert(temp1 != MIN_WORD);
*
* L_temp = GSM_L_MULT( temp1, temp1 );
* L_result = GSM_L_ADD( L_temp, L_result );
* }
*
* if (L_result > EM) {
* Mc = m;
* EM = L_result;
* }
* }
*/
#undef STEP
#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
L_result += L_temp * L_temp;
/* common part of 0 and 3 */
L_result = 0;
STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
L_common_0_3 = L_result;
/* i = 0 */
STEP( 0, 0 );
L_result <<= 1; /* implicit in L_MULT */
EM = L_result;
/* i = 1 */
L_result = 0;
STEP( 1, 0 );
STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
L_result <<= 1;
if (L_result > EM) {
Mc = 1;
EM = L_result;
}
/* i = 2 */
L_result = 0;
STEP( 2, 0 );
STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
L_result <<= 1;
if (L_result > EM) {
Mc = 2;
EM = L_result;
}
/* i = 3 */
L_result = L_common_0_3;
STEP( 3, 12 );
L_result <<= 1;
if (L_result > EM) {
Mc = 3;
EM = L_result;
}
/**/
/* Down-sampling by a factor 3 to get the selected xM[0..12]
* RPE sequence.
*/
for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
*Mc_out = Mc;
}
/* 4.12.15 */
static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
word xmaxc, /* IN */
word * exp_out, /* OUT */
word * mant_out ) /* OUT */
{
word exp, mant;
/* Compute exponent and mantissa of the decoded version of xmaxc
*/
exp = 0;
if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
mant = xmaxc - (exp << 3);
if (mant == 0) {
exp = -4;
mant = 7;
}
else {
while (mant <= 7) {
mant = mant << 1 | 1;
exp--;
}
mant -= 8;
}
assert( exp >= -4 && exp <= 6 );
assert( mant >= 0 && mant <= 7 );
*exp_out = exp;
*mant_out = mant;
}
static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
word * xM, /* [0..12] IN */
word * xMc, /* [0..12] OUT */
word * mant_out, /* OUT */
word * exp_out, /* OUT */
word * xmaxc_out /* OUT */
)
{
int i, itest;
word xmax, xmaxc, temp, temp1, temp2;
word exp, mant;
/* Find the maximum absolute value xmax of xM[0..12].
*/
xmax = 0;
for (i = 0; i <= 12; i++) {
temp = xM[i];
temp = GSM_ABS(temp);
if (temp > xmax) xmax = temp;
}
/* Qantizing and coding of xmax to get xmaxc.
*/
exp = 0;
temp = SASR( xmax, 9 );
itest = 0;
for (i = 0; i <= 5; i++) {
itest |= (temp <= 0);
temp = SASR( temp, 1 );
assert(exp <= 5);
if (itest == 0) exp++; /* exp = add (exp, 1) */
}
assert(exp <= 6 && exp >= 0);
temp = exp + 5;
assert(temp <= 11 && temp >= 0);
xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
/* Quantizing and coding of the xM[0..12] RPE sequence
* to get the xMc[0..12]
*/
APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
/* This computation uses the fact that the decoded version of xmaxc
* can be calculated by using the exponent and the mantissa part of
* xmaxc (logarithmic table).
* So, this method avoids any division and uses only a scaling
* of the RPE samples by a function of the exponent. A direct
* multiplication by the inverse of the mantissa (NRFAC[0..7]
* found in table 4.5) gives the 3 bit coded version xMc[0..12]
* of the RPE samples.
*/
/* Direct computation of xMc[0..12] using table 4.5
*/
assert( exp <= 4096 && exp >= -4096);
assert( mant >= 0 && mant <= 7 );
temp1 = 6 - exp; /* normalization by the exponent */
temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
for (i = 0; i <= 12; i++) {
assert(temp1 >= 0 && temp1 < 16);
temp = xM[i] << temp1;
temp = GSM_MULT( temp, temp2 );
temp = SASR(temp, 12);
xMc[i] = temp + 4; /* see note below */
}
/* NOTE: This equation is used to make all the xMc[i] positive.
*/
*mant_out = mant;
*exp_out = exp;
*xmaxc_out = xmaxc;
}
/* 4.2.16 */
static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
register word * xMc, /* [0..12] IN */
word mant,
word exp,
register word * xMp) /* [0..12] OUT */
/*
* This part is for decoding the RPE sequence of coded xMc[0..12]
* samples to obtain the xMp[0..12] array. Table 4.6 is used to get
* the mantissa of xmaxc (FAC[0..7]).
*/
{
int i;
word temp, temp1, temp2, temp3;
longword ltmp;
assert( mant >= 0 && mant <= 7 );
temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
for (i = 13; i--;) {
assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
/* temp = gsm_sub( *xMc++ << 1, 7 ); */
temp = (*xMc++ << 1) - 7; /* restore sign */
assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
temp <<= 12; /* 16 bit signed */
temp = GSM_MULT_R( temp1, temp );
temp = GSM_ADD( temp, temp3 );
*xMp++ = gsm_asr( temp, temp2 );
}
}
/* 4.2.17 */
static void RPE_grid_positioning P3((Mc,xMp,ep),
word Mc, /* grid position IN */
register word * xMp, /* [0..12] IN */
register word * ep /* [0..39] OUT */
)
/*
* This procedure computes the reconstructed long term residual signal
* ep[0..39] for the LTP analysis filter. The inputs are the Mc
* which is the grid position selection and the xMp[0..12] decoded
* RPE samples which are upsampled by a factor of 3 by inserting zero
* values.
*/
{
int i = 13;
assert(0 <= Mc && Mc <= 3);
switch (Mc) {
case 3: *ep++ = 0;
case 2: do {
*ep++ = 0;
case 1: *ep++ = 0;
case 0: *ep++ = *xMp++;
} while (--i);
}
while (++Mc < 4) *ep++ = 0;
/*
int i, k;
for (k = 0; k <= 39; k++) ep[k] = 0;
for (i = 0; i <= 12; i++) {
ep[ Mc + (3*i) ] = xMp[i];
}
*/
}
/* 4.2.18 */
/* This procedure adds the reconstructed long term residual signal
* ep[0..39] to the estimated signal dpp[0..39] from the long term
* analysis filter to compute the reconstructed short term residual
* signal dp[-40..-1]; also the reconstructed short term residual
* array dp[-120..-41] is updated.
*/
#if 0 /* Has been inlined in code.c */
void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
word * dpp, /* [0...39] IN */
word * ep, /* [0...39] IN */
word * dp) /* [-120...-1] IN/OUT */
{
int k;
for (k = 0; k <= 79; k++)
dp[ -120 + k ] = dp[ -80 + k ];
for (k = 0; k <= 39; k++)
dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
}
#endif /* Has been inlined in code.c */
void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
struct gsm_state * S,
word * e, /* -5..-1][0..39][40..44 IN/OUT */
word * xmaxc, /* OUT */
word * Mc, /* OUT */
word * xMc) /* [0..12] OUT */
{
word x[40];
word xM[13], xMp[13];
word mant, exp;
Weighting_filter(e, x);
RPE_grid_selection(x, xM, Mc);
APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
APCM_inverse_quantization( xMc, mant, exp, xMp);
RPE_grid_positioning( *Mc, xMp, e );
}
void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
struct gsm_state * S,
word xmaxcr,
word Mcr,
word * xMcr, /* [0..12], 3 bits IN */
word * erp /* [0..39] OUT */
)
{
word exp, mant;
word xMp[ 13 ];
APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
APCM_inverse_quantization( xMcr, mant, exp, xMp );
RPE_grid_positioning( Mcr, xMp, erp );
}
|